Math, asked by adityahrudaysamal, 1 year ago

If tp=a, tq=b and tr=C are terms of an AP
Then prove that a(q-r) +b(r-p) +C(p-q) =0

Answers

Answered by pulakmath007
15

\displaystyle\huge\red{\underline{\underline{Solution}}}

GIVEN

 \sf{For  \: An  \: AP \:  \:  \:  \:  t_p = a, t_q=b, t_r = c }

TO PROVE

 \sf{ a(q - r) + b(r - p) + c(p - q) = 0\: }

CALCULATION

Let x be the first term and d be the Common Difference of the Arithmetic progression

Then

 \sf{ a = x + (p - 1)d\: }

 \sf{ b = x + (q - 1)d\: }

 \sf{ c = x + (r - 1)d\: }

Now

 \sf{b -  a }

 \sf{ = x + qd - d - x - pd + d\: }

 \sf{= qd - pd\: }

So

 \sf{b -  a = qd - pd\: }

Similarly

 \sf{c -  b = rd - qd\: }

 \sf{a-  c= pd - rd\: }

Now

 \sf{ a(q - r) + b(r - p) + c(p - q) \: }

 =  \sf{ p(c - b) + q(a - c) + r(b - a) \: }

 =  \sf{ p(rd - qd) + q(pd - rd) + r(qd - pd) \: }

 =  \sf{ prd - pqd + pqd - qrd + qrd - p rd\: }

 \sf{ = 0}

  \therefore \:  \: \sf{ a(q - r) + b(r - p) + c(p - q) = 0\: }

Hence proved

━━━━━━━━━━━━━━━━

LEARN MORE FROM BRAINLY

Find the 100th term of an AP whose nth term is 3n+1

https://brainly.in/question/22293445

Similar questions