Physics, asked by pratham3892, 10 months ago

If train is at 90 km per hour breaks are applied and the acceleration is -0 .5 then find distance covered before going to rest

Answers

Answered by Ridvisha
47
{ \red{ \huge{ \mathfrak{ \underline{ \underline{Question:-}}}}}}

▪IF train is at 90 km per hour breaks are applied and the acceleration is -0.5m/sec^2 . then , find the distance before going to rest??

{ \red{ \huge{ \underline{ \underline{ \mathfrak{Solution:-}}}}}}

{ \orange{ \bold{ \underline{Given \: that-}}}}

• initially the train is moving at speed 90km/hr

I.e., initial velocity ( u ) = 90km/hr

{ \bold{ = 90 \times \frac{5}{18} m \: {sec}^{ - 1} = 5 \times 5 m \: {sec}^{ - 1} }}

{ \pink{ \bold{ initial \: velocity(u) = 25 \: m \: {sec}^{ - 1}}}}

{ \pink{ \bold{ acceleration(a) = - 0.5 \: m \: {sec}^{ - 2} }}}

• finally the train comes at rest....

therefore,

{ \bold{ \pink{final \: velocity (v)= 0 \: m \: {sec}^{ - 1}}}}

{ \orange{ \bold{ \underline{To \: find-}}}}

▪ The distance(S) covered by the train before going to rest???

Using THIRD EQUATION OF MOTION ,,

for calculating the distance covered by the train before going to rest ......

{ \boxed{ \bold{ \red{ \: \: {v}^{2} = {u}^{2} + 2aS\: \: \: }}}}

where,

▪ v = final velocity

▪ u = initial velocity

▪ a = acceleration

▪ S = displacement

here, solving for S.....

{ \red{ \bold{ {(0m \: {sec}^{ - 1}) }^{2} = {(25m \: {sec}^{ - 1}) }^{2} + 2 \times ( - 0.5m \: {sec}^{ - 2} ) \times S }}}

{ \bold{ \implies{0 \: {m}^{2} {sec}^{ - 2} = 625 {m}^{2} \: {sec}^{ - 2} - 1.0 \: m \: {sec}^{ - 2} \times S }}}

{ \bold{ \implies{1.0 \: m \: {sec}^{ - 2} \times S  = 625 \: {m}^{2} \: {sec}^{ - 2} - 0 {m}^{2} \: {sec}^{ - 2} }}}

{ \bold{ \implies{1.0m \: {sec}^{ - 2} \times S= 625 {m}^{2} \: {sec}^{ - 2}}}}

{ \bold{ \implies{S  = \frac{625 {m}^{2} \: {sec}^{ - 2} }{1m \: {sec}^{ - 2} }}}}

{ \boxed{ \implies{ \bold{ \red{S  = 625 \: m \: \: }}}}}

therefore,

the distance covered by the train before going to rest is 625 m.....
Answered by llAngelicQueenll
0

{ \red{ \huge{ \mathfrak{ \underline{ \underline{Question:-}}}}}}

▪IF train is at 90 km per hour breaks are applied and the acceleration is -0.5m/sec^2 . then , find the distance before going to rest??

{ \red{ \huge{ \underline{ \underline{ \mathfrak{Solution:-}}}}}}

{ \orange{ \bold{ \underline{Given \: that-}}}}

• initially the train is moving at speed 90km/hr

I.e., initial velocity ( u ) = 90km/hr

{ \bold{ = 90 \times \frac{5}{18} m \: {sec}^{ - 1} = 5 \times 5 m \: {sec}^{ - 1} }}

{ \pink{ \bold{ initial \: velocity(u) = 25 \: m \: {sec}^{ - 1}}}}

{ \pink{ \bold{ acceleration(a) = - 0.5 \: m \: {sec}^{ - 2} }}}

• finally the train comes at rest....

therefore,

{ \bold{ \pink{final \: velocity (v)= 0 \: m \: {sec}^{ - 1}}}}

{ \orange{ \bold{ \underline{To \: find-}}}}

▪ The distance(S) covered by the train before going to rest???

Using THIRD EQUATION OF MOTION ,,

for calculating the distance covered by the train before going to rest ......

{ \boxed{ \bold{ \red{ \: \: {v}^{2} = {u}^{2} + 2aS\: \: \: }}}}

where,

▪ v = final velocity

▪ u = initial velocity

▪ a = acceleration

▪ S = displacement

here, solving for S.....

{ \red{ \bold{ {(0m \: {sec}^{ - 1}) }^{2} = {(25m \: {sec}^{ - 1}) }^{2} + 2 \times ( - 0.5m \: {sec}^{ - 2} ) \times S }}}

{ \bold{ \implies{0 \: {m}^{2} {sec}^{ - 2} = 625 {m}^{2} \: {sec}^{ - 2} - 1.0 \: m \: {sec}^{ - 2} \times S }}}

{ \bold{ \implies{1.0 \: m \: {sec}^{ - 2} \times S  = 625 \: {m}^{2} \: {sec}^{ - 2} - 0 {m}^{2} \: {sec}^{ - 2} }}}

{ \bold{ \implies{1.0m \: {sec}^{ - 2} \times S= 625 {m}^{2} \: {sec}^{ - 2}}}}

{ \bold{ \implies{S  = \frac{625 {m}^{2} \: {sec}^{ - 2} }{1m \: {sec}^{ - 2} }}}}

{ \boxed{ \implies{ \bold{ \red{S  = 625 \: m \: \: }}}}}

therefore,

the distance covered by the train before going to rest is 625 m.....

Similar questions