Math, asked by Srinivasrao223, 1 year ago

If triangle ABC right angle at C if tan A =1/root3 find the value of sin A cosB+ cos A sin B

Answers

Answered by mindfulmaisel
214

"The value of\sin A \cos B + \cos A \sin B = 1

Given:

\tan A = \frac { 1 } { \sqrt { 3 } }

To find:

Value of \sin A \cos B + \cos A \sin B

Solution:

In the given right angled triangle

\tan A = \frac { 1 } { \sqrt { 3 } }

Since \tan 30 ^ { \circ} = \frac { 1 } { \sqrt { 3 } }

A = 30

Given C = 90

So, “A” + “B” + “C” = “180”

or,  “B = 60”

Hence, \tan B = \tan 60 ^ { \circ} = \sqrt { 3 }

B = 60

Now, \sin A \cos B + \cos A \sin B = \sin ( A + B ) = \sin \left( 30 ^ { \circ} + 60 ^ { \circ} \right) = \sin 90 ^ { \circ} = 1

Hence, the value will be 1."

Answered by Anika2364
78

Given - ABC is a right angled triangle , tan A =

 \frac{1}{ \sqrt{3} }

Solution -

tan A =

 \frac{1}{ \sqrt{3} }

tan A = tan 30° ( tan 30° = 1/√3 )

A = 30°

C = 90° (Given)

So, Therefore , B = 90 - 30 = 60°(Angle sum property of a triangle / A + B + C = 180° )

Sin A • Cos B + Cos A • Sin B

 \frac{1}{2}  \times  \frac{1}{2}  +  \frac{ \sqrt{3} }{2}  \times  \frac{ \sqrt{3} }{2} \\  \frac{1}{4}   +  \frac{ \sqrt{3} }{4}  \\  \frac{4}{4}  \\ 1

Similar questions