Math, asked by dadhichshivam, 1 year ago

If triangle ABC similar to triangle RPQ AB =3CM,BC=5CM,AC=6CM,RP=6CM N and PQ=10CM then find QR

Answers

Answered by kirtidhaniya
62
As
Ab is 3cm BC is 5cm ac is 6cm rp is 6cm pq is 10cm the rq will be 12cm
Attachments:
Answered by qwcricket10
15

Given,

Two triangle Δ ABC, ΔRPQ.

ΔABC ≈ ΔRPQ

AB = 3cm

BC = 5cm

AC = 6cm

RP = 6cm

PQ = 10cm

To Find,

The side QR in the Δ RPQ.

Solution,

Given that,

There are two triangles Δ ABC and ΔRPQ.

Both the triangles are similar.

Two triangles are similar when all the sides of the triangles are proportional.

Therefore,

AB is proportional to RP.

BC is proportional to PQ.

AC is proportional to RQ.

\frac{RP}{AB} = \frac{PQ}{BC} = \frac{RQ}{AC}

6/3 = 10/5 = RQ/6

\frac{10}{5} = \frac{RQ}{6}

RQ = (10*6) / 5

RQ = 12cm.

In ΔRPQ, the side RQ is 12cm.

Similar questions