If triangle ABC triangle PQR and area of triangle ABC = area of triangle PQR, then prove that triangle ABC is congruent to triangle PQľ
Answers
Answered by
1
Step-by-step explanation:
Given:ΔABC~ΔPQR
Ar(ABC)=Ar(PQR)
To prove :ΔABC is congruent to ΔPQR
Proof :ΔABC~ΔPQR(given)
Ar(ABC)/Ar(PQR)=AB²/PQ²=BC²/QR²=AC²/PR²
Ar(ABC)/Ar(ABC)=AB²/PQ²=BC²/QR²=AC²/PR²
1=AB²/PQ²=BC²/QR²=AC²/PR²
1=AB²/PQ², 1=BC²/QR², 1=AC²/PR²
AB²=PQ², BC²=QR², AC²=PR²
AB=PQ, BC=QR,AC=PR
Now in ΔABC and ΔPQR
AB=PQ
BC=QR
AC=PR
so by SSS congruency ΔABC is congruent to ΔPQR
Hence, proved
if this answer is helpful to you then please mark it as the brainliest.
[thank you ]
Answered by
2
ΔABC∼ΔPQR
ar(ΔABC)=4ar(ΔPQR)
area ΔPQRarea ΔABC=14
area(ΔPQR)area(ΔABC)=QR2BC2
14=QR2BC2
⇒(12)2=(QR12)2
12=QR12
⇒QR=212×1=6
QR=6cm
Similar questions