Math, asked by annedenevaur, 10 months ago

if two adjacent angles of a parallelogram are (5x-5) and (10x+35), then the ratio of this angle is​

Answers

Answered by Mysterioushine
16

\huge\rm\underline\pink{GIVEN:}

  • \large\rm{Two\:adjacent\:angles\:of\:parallelogram\:are\:(5x-5)\:and\:(10x+35)}

\huge\rm\underline\pink{TO\:FIND:}

  • \large\rm{Ratio\:of\:the\:angles}

\huge\rm\underline\pink{SOLUTION:}

\large\rm{Adjacent\:angles\:of\:given\:parallelogram\:are\:(5x-5)\:and\:(10x+35)}

\large\rm\bold{\boxed{Sum\:of\:two\:adjacent\:angles\:of\:parallelogram\:is\:180°}}

\large\rm{\implies{5x-5+10x+35\:=\:180°}}

\large\rm{\implies{15x+30\:=\:180°}}

\large\rm{\implies{15x\:=\:180°-30°}}

\large\rm{\implies{15x\:=\:150°}}

\large\rm{\implies{x\:=\:\frac{150}{15}}}

\large\rm{\implies{x\:=\:10}}

\large\rm{\rightarrow{The\:angle\:(5x-5)\:=\:5(10)-5\:=\:45°}}

\large\rm{\rightarrow{The\:angle\:(10x-35)\:=\:10(10)-35\:=\:65°}}

\large\rm{\therefore{Ratio\:between\:these\:angles\:=\:45:65\:=\:9:13}}

Answered by 4427
5

Really Dear Renuka your Answers are of high quality

Thank You for helping

Similar questions