Math, asked by sk828122, 2 months ago

if two adjacent of a parallelogram are (5x + 5)° and (10x + 25)°, then find the value of x​

Answers

Answered by ishaandraws
2

Answer:

SOLUTION: if two adjacent angles of a parallelogram are 5x-5 and 10x+35 degrees then the ratios of these angles are. The sum of two consecutive angles of a parallelogram is equal to 180 . Therefore. you have an equation (5x-5) + (10x+35) = 180.

Answered by Anonymous
46

Given :-

  • The two adjacent angles of a parallelogram are (5x + 5)° and (10x + 25)°.

To Find :-

  • What is the value of x.

Solution :-

Given :

\begin{gathered}\bigstar\: \: \bf{First\: angles\: of\: parallelogram =\: (5x + 5)^{\circ}}\\\end{gathered}

\begin{gathered}\bigstar\: \: \bf{Second\: angles\: of\: parallelogram =\: (10x + 25)^{\circ}}\\\end{gathered}

Now, as we know that :

\begin{gathered}\footnotesize\mapsto \sf\boxed{\bold{\pink{Sum\: of\: all\: angles\: of\: parallelogram =\: 180^{\circ}}}}\\\end{gathered}

According to the question by using the formula we get,

\longrightarrow \sf 5x + 5^{\circ} + 10x + 25^{\circ} =\: 180^{\circ}

\longrightarrow \sf 5x + 10x + 5^{\circ} + 25^{\circ} =\: 180^{\circ}

\longrightarrow \sf 15x + 30^{\circ} =\: 180^{\circ}

\longrightarrow \sf 15x =\: 180^{\circ} - 30^{\circ}

\longrightarrow \sf 15x =\: 150^{\circ}

\longrightarrow \sf x =\: \dfrac{150^{\circ}}{15}

\longrightarrow \sf x =\: \dfrac{10^{\circ}}{1}

\longrightarrow \sf\bold{\red{x =\: 10^{\circ}}}

\begin{gathered}{\small{\bold{\purple{\underline{\therefore\: The\: value\: of\: x\: is\: 10^{\circ}\: .}}}}}\\\end{gathered}

Similar questions