Math, asked by raghu2654, 9 months ago

If two angles are supplementary to each other and angle in a radius 6:4 find the angle

Answers

Answered by nush25
0

Answer:

hope it might help u :))

please let me know

Attachments:
Answered by Anonymous
2

\sf\blue{Correct \ Question}

\sf{If \ two \ angles \ are \ supplementary \ to \ each}

\sf{other \ and \ angle \ in \ a \ ratio \ 6:4. \ Find}

\sf{the \ angles.}

____________________________________

\sf\red{\underline{\underline{Answer:}}}

\sf{The \ angles \ are \ 108^\circ \ and \ 72^\circ \ respectively. }

\sf\orange{Given:}

\sf{\implies{Angles \ are \ supplementary.}}

\sf{\implies{Angles \ are \ in \ ratio \ of \ 6:4}}

\sf\pink{To \ find:}

\sf{The \ angles.}

\sf\green{\underline{\underline{Solution:}}}

\sf{Let \ the \ angles \ be \ x \ and \ y.}

\sf{According \ to \ the \ first \ condition. }

\sf{x+y=180...(1)}

\sf{According \ to \ the \ second \ condition. }

\sf{\frac{x}{y}=\frac{6}{4}}

\sf{\therefore{\frac{x}{y}=\frac{3}{2}}}

\sf{\therefore{2x=3y}}

\sf{\therefore{2x-3y=0...(2)}}

\sf{Multiply \ equation(1) \ by \ 3}

\sf{3x+3y=540...(3)}

\sf{Add \ equations \ (3) \ and \ (2)}

\sf{3x+3y=540}

\sf{+}

\sf{2x-3y=0}

___________________

\sf{\therefore{5x=540}}

\sf{\therefore{x=\frac{540}{5}}}

\boxed{\sf{\therefore{x=108}}}

\sf{Substitute \ x=108 \ in \ equation(1)}

\sf{108+y=180}

\sf{\therefore{y=180-108}}

\boxed{\sf{\therefore{y=72}}}

\sf\purple{\tt{\therefore{The \ angles \ are \ 108^\circ \ and \ 72^\circ \ respectively. }}}

Similar questions