Math, asked by papafairy143, 1 day ago

If two angles of a triangle are 30° and 45° and the included side is 2.732 m, find the area of triangle. Use sqrt(3) = 1.732​

Answers

Answered by mathdude500
25

\large\underline{\sf{Solution-}}

Given that, two angles of a triangle are 30° and 45° and the included side is 2.732 m

Let assume that the required triangle be ABC and let AD is perpendicular drawn from A to BC intersecting BC at D.

Let assume that AD = h m, ∠B = 45° and ∠C = 30°.

Now, to find the area of triangle ABC, we have to first find the height of triangle ABC.

So, Consider right-angled triangle ABD

\rm \: tan45 \degree \:  =  \: \dfrac{AD}{BD}  \\

\rm \: 1 \:  =  \: \dfrac{h}{BD}  \\

\rm\implies \:BD \:  =  \: h \: -  -  - (1)  \\

Now, Consider right-angled triangle ADC

\rm \: tan30 \degree \:  =  \: \dfrac{AD}{DC}  \\

\rm \: \dfrac{1}{ \sqrt{3} }  \:  =  \: \dfrac{h}{DC}  \\

\rm\implies \:DC \:  =  \:  \sqrt{3}  \: h \:  -  -  - (2) \\

As it is further given that

\rm \: BC = 2.732 \\

\rm \: BD + DC = 2.732 \\

\rm \: h +  \sqrt{3} \: h  = 2.732 \\

\rm \: h(1 +  \sqrt{3})  = 2.732 \\

\rm \: h(1 +  1.732)  = 2.732 \\

\rm \: 2.732h  = 2.732 \\

\rm\implies \:h \:  =  \: 1 \: m \\

Now, In triangle ABC, we have

\rm \: BC  \: =  \: 2.732 \: m \\

\rm \: AD \:  =  \: 1 \: m \\

So,

\rm \: Area_{(\triangle\:ABC)} \:  =  \: \dfrac{1}{2} \:  \times  \: BC \:  \times  \: AD \:  \\

\rm \: Area_{(\triangle\:ABC)} \:  =  \: \dfrac{1}{2} \:  \times  \: 2.732 \:  \times  \: 1 \:  \\

\rm\implies \: \:\boxed{\sf{  \:  \: \rm \: Area_{(\triangle\:ABC)} \:  =  \:1.366 \: \: }}  \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\sf Trigonometry\: Table \\ \begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\boxed{\begin{array}{ |c |c|c|c|c|c|} \bf\angle A & \bf{0}^{ \circ} & \bf{30}^{ \circ} & \bf{45}^{ \circ} & \bf{60}^{ \circ} & \bf{90}^{ \circ} \\ \\ \rm sin A & 0 & \dfrac{1}{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{ \sqrt{3}}{2} &1 \\ \\ \rm cos \: A & 1 & \dfrac{ \sqrt{3} }{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{1}{2} &0 \\ \\ \rm tan A & 0 & \dfrac{1}{ \sqrt{3} }&1 & \sqrt{3} & \rm \infty \\ \\ \rm cosec A & \rm \infty & 2& \sqrt{2} & \dfrac{2}{ \sqrt{3} } &1 \\ \\ \rm sec A & 1 & \dfrac{2}{ \sqrt{3} }& \sqrt{2} & 2 & \rm \infty \\ \\ \rm cot A & \rm \infty & \sqrt{3} & 1 & \dfrac{1}{ \sqrt{3} } & 0\end{array}}}\end{gathered}\end{gathered}\end{gathered} \end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

Attachments:
Answered by Missincridedible
10

\large\mathbb \red{\fcolorbox{red}{lime}{ ANSWER\ }} \\

Attachments:
Similar questions