English, asked by Anonymous, 3 months ago

If two circles intersect in two points prove that the line through their centres is the perpendicular bisector of the common chord.
No spam! No copied answer!​

Answers

Answered by krishnaauto5857
1

Answer:

your answer in below but please mark as brillant no copy

Explanation:

Let two circles O and O' intersect at two points A and B so that AB is the common chord of two circles and OO' is the line segment joining the centres

Let OO

intersect AB at M

Now Draw line segments OA,OB,O

AandO

B

In ΔOAO

andOBO

, we have

OA=OB (radii of same circle)

O

A=O

B (radii of same circle)

O

O=OO

(common side)

⇒ΔOAO

≅ΔOBO

(SSS congruency)

⇒∠AOO

=∠BOO

⇒∠AOM=∠BOM......(i)

Now in ΔAOM and ΔBOM we have

OA=OB (radii of same circle)

∠AOM=∠BOM (from (i))

OM=OM (common side)

⇒ΔAOM≅ΔBOM (SAS congruncy)

⇒AM=BM and∠AMO=∠BMO

But

∠AMO+∠BMO=180°

⇒2∠AMO=180°

⇒∠AMO=90°

Thus,AM=BM and∠AMO=∠BMO=90°

HenceOO

is the perpendicular bisector of AB.

MARK AS BRILLANT

Answered by Anonymous
22

Question:-

  • If two circles intersect in two points prove that the line through their centres is the perpendicular bisector of the common chord.

Sólution:-

  • Given:

Two circles, with centres O and O' intersect at two points A and B. A AB is the common chord of the two circles and OO' is the line segment joining the centres of the two circles. Let OO' intersect AB at P.

  • To prove:

OO' is the perpendicular bisector of AB.

  • Construction:

Join OA, OB, O'A and O'B

  • Proof:

In triangles OAO' and OBO', we have

OO' = OO' (Common)

OA = OB (Radii of the same circle)

O'A = O'B (Radii of the same circle)

⇒ △OAO' ≅ △OBO' (SSS congruence criterion)

⇒ ∠AOO' = ∠BOO' (CPCT)

i.e., ∠AOP = ∠BOP

In triangles AOP and BOP, we have

OP = OP (Common)

∠AOP = ∠BOP (Proved above)

OA = OB (Radio of the same circle)

∴ △AOR ≅ △BOP (By SAS congruence criterion)

⇒ AP = CP (CPCT)

and ∠APO = ∠BPO (CPCT)

But ∠APO + ∠BPO = 180° (Linear pair)

∴ ∠APO + ∠APO = 180° ⇒ 2∠APO = 180°

⇒ ∠APO = 90°

Thus, AP = BP and ∠APO = ∠BPO = 90°

Hence, OO' is the perpendicular bisector of AB.

  • Hope you are helped✔️
Attachments:
Similar questions