Math, asked by Daniel9398, 2 months ago

If two consecutive sides of a rhombus are represented by 3x-6 and x+14 , then the perimeter of rhombus is​

Answers

Answered by Anonymous
23

Answer :

  • Perimeter of rhombus is 96.

Given :

  • If two consecutive sides of a rhombus are represented by 3x - 6 and x + 14

To find :

  • Perimeter of rhombus

Solution :

We know that, In a rhombus all sides are equal so ,

According to question :

➟ 3x - 6 = x + 14

➟ 2x = 20

➟ x = 20/2

➟ x = 10

Now, putting the value of x = 10 in x + 4 to find the sides

➟ x + 14

➟ 10 + 24

➟ 24

Sides is 24.

Finding the perimeter of rhombus :

We know that

  • Perimeter of rhombus = 4 × a

Where, a is side

➟ Perimeter of rhombus = 4 × a

➟ Perimeter of rhombus = 4 × 24

➟ Perimeter of rhombus = 96

Hence, Perimeter of rhombus is 96.

Verification :

➟ 3x - 6 = x + 14

➟ 3(10) - 6 = 10 + 14

➟ 30 - 6 = 24

➟ 24 = 24

Hence , Verified

Answered by Anonymous
42

 \large \tt \color{skyblue}{ \underline{Givᥱn : }}

  • If two consecutive sides of rhombus are represented by 3x - 6 and x + 14

 \large  \tt \color{skyblue}{ \underline{To \:  find :  }}

  • Find the perimeter of rhombus

\large  \tt \color{skyblue}{ \underline{Soᥣᥙtion :  }}

 \sf{Wᥱ \:  knoᥕ \:  thᥲt \:  ᥲᥣᥣ \:  sidᥱ \:  of  \: rhombᥙs \:  ᥲrᥱ \:  ᥱqᥙᥲᥣ}

 \sf{ \therefore \: 3x - 6 = x + 14}

 \sf{ \qquad  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: :  \rightarrow  \: 3x  -  x = 14 + 6}

\sf{ \qquad  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  :  \rightarrow  \: 2x = 20}

\sf{ \qquad  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: :  \rightarrow  \: x =  \cancel  \frac{20}{2} }

\sf{ \qquad  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  :  \rightarrow  \: x = 10}

\:\:\:\:\:\:\:\:\:\:\:\:\:\: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: ━━━━━━━━━━━━━━━━━━

 \sf{side = 3x - 6 = 3  \times 10 - 6 = 24}

 \fbox{ \sf{ \underline \pink{perimeter \: of \: rhombus = 4  x side}}}

 \sf{ perimeter = 4 \times 24}

 \sf{perimeter = 96}

 \sf{  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \therefore  { \underline{Hence  \: perimeter \:  of  \: rhombus \:  is \:  96}}}

Similar questions