Math, asked by sauravtiwary, 10 months ago

if two diagonals of a rhombous are of length 90m and 400m then find the height and perimeter of the rhombous

Answers

Answered by ZzyetozWolFF
2

Question:

if two diagonals of a rhombous are of length 90m and 400m then find the height and perimeter of the rhombous

Answer:

820m

Step-by-step explanation:

Let the Rhombus be ABCD

We know that :

 \pink {diagonals \ of \  rhombus  \ are \ perpendicular \ bisector \ of \ each\  other.}

 {\bold {\pink{GIVEN}}}

Diagonal = A.C. = 90cm

Diagonal = BD = 400 cm

{ AO = OC = 90/2 = 45cm}

{BO = OD = 400/2 = 200cm}

Triangle DOC is an right angles triangle

(DC)^2 = (OD)^2 + (OD)^2 [pythagorus]

(DC)^2 = (200)^2 + (45)^2

(DC)^2 = (40,000) + (2,025)

(DC)^2 = 42,025

(DC) = root (42,025)

(DC) = 205cm

Perimeter = 205 × 4

Perimeter = 820m

Answered by Anonymous
9

 \large\bf\underline{Given:-}

  • Diagonals of rhombus = 90m and 400m

 \large\bf\underline {To \: find:-}

  • Height
  • perimeter

 \huge\bf\underline{Solution:-}

Formula for finding the side of rhombus when diagonals are given.

   \large \dag \:  \bf \: side  =  \frac{ \sqrt{(diagonal1) {}^{2} +  {(diagonal2)}^{2}  } }{2}

 \dashrightarrow \rm \: side =  \frac{  \sqrt{ {90}^{2}  +  {400}^{2} }}{2}  \\  \\  \dashrightarrow \rm \: side =  \frac{ \sqrt{8100 + 160000}  }{2}  \\  \\  \dashrightarrow \rm \: side =  \frac{ \sqrt{168100} }{2}  \\  \\ \dashrightarrow \rm \: side =  \frac{410}{2}  \\  \\ \dashrightarrow \rm \: side = 205

Area of rhombus when diagonals are given:-

\large \bf \dag \:  \:  area = \frac{1}{2}  \times d_ 1 \times d_2 \: sq.units

  \rightarrowtail  \rm \:  \frac{1}{2}  \times 90 \times 400 \\  \\ \rightarrowtail  \rm \:  \frac{1}{2}  \times 36000 \\  \\ \rightarrowtail  \rm \:   \cancel\frac{36000}{2}  \\  \\ \rightarrowtail  \rm \: 18000 \: sq.units

Area of rhombus = 18000

  • base = 205 m

 \longrightarrow \rm \: b \times h = 18000 \\  \\ \longrightarrow \rm \: 205 \times h = 18000 \\  \\ \longrightarrow \rm \: h =  \frac{18000}{205}  \\  \\ \longrightarrow \bf \: h = 87.8m

Perimeter of rhombus :-

\large \bf \dag  \: \: perimeter = 4 \times  (side)

 \longmapsto \rm  \: perimeter = \: 4 \times 205 \\  \\ \longmapsto \rm \: perimeter = 820 \: units

So,

★ Height of rhombus = 87.8m

✦ Perimeter of rhombus = 820m

Similar questions