Math, asked by srujanika70, 4 months ago

If two numbers are in the ratio of 5:9 and their sum is 84, then the smallest number is what? pls give the answer with process​

Answers

Answered by mathuradhwani
0

Answer:

30, 54

Step-by-step explanation:

let the numbers be 5x and 9 x

= 5x+9x= 84

14x=84

x= 6

Answered by Anonymous
6

\dag{\underline {\sf{\large { AnswEr-: }}}}\\\\

  • \boxed{\star{\bigstar{\underline {\sf{ \:The\:two\:numbers\:are\:30\:and\:54. }}}}}\\\\
  • \boxed{\star{\bigstar{\underline {\sf{ \:The\:smallest \:numbers\:is\:30\:. }}}}}\\\\

\star{\bigstar {\sf{\large { Explanation-: }}}}\\\\

  •  \frak{Given \:\: -:} \begin{cases} \sf{ Two \:numbers\: are\: in\: the\: ratio\: of\: 5:9\: } & \\\\ \sf{ The\:sum\:of\:of\:two\:number \:is\:84.}\end{cases} \\\\

  •  \frak{To\:Find \:\: -:} \begin{cases} \sf{ The\:Smallest\:number\:.}\end{cases} \\\\

\star{\bigstar {\sf{\large { Solution-: }}}}\\\\

  •  \frak{Let's \:Assume \: -:} \begin{cases} \sf{ The \:two\:number\:be\:5x\:and\:9x.}\end{cases} \\\\

\star{\bigstar {\sf{\large { Then, }}}}\\\\

  •  \frak{The\:Number \: -:} \begin{cases} \sf{ The \:First \:number\:is\:5x\:}& \\\\ \sf{ Th\:Second \:number\:=9x.}\end{cases} \\\\

\star{\bigstar {\sf{\large { Given\:That\:-: }}}}\\\\

  • \sf{The\:sum\:of\:of\:two\:number \:is\:84}\\\\

\dag{\underline {\sf{\large { According\:To\:Question-: }}}}\\\\

  • \sf{\large {\underline {\star{\bigstar {Formed \: Equation \:=5x + 9x = 84  }}}}}\\\\

\dag{\underline {\sf{\large { Solve\:for\:x\:from\:Formed\:Equation-: }}}}\\\\

  • \sf{\large {\underline {\star{\bigstar {Formed \: Equation \:=5x + 9x = 84  }}}}}\\\\

\star{\bigstar {\sf{\large { Now -: }}}}\\\\

  • \longrightarrow{\sf{ \:5x + 9x = 84  }}\\\\

  • \longrightarrow{\sf{ \:14x = 84  }}\\\\

  • \longrightarrow{\sf{ \:x = \dfrac{84}{14}  }}\\\\

  • \longrightarrow{\sf{ \:x = 6  }}\\\\

\star{\bigstar {\sf{\large { Therefore -: }}}}\\\\

  • \boxed{\star{\bigstar {\sf{ \:x = 6  }}}}\\\\

\star{\bigstar {\sf{\large { Now -: }}}}\\\\

  •  \frak{Putting \:x =6 \: -:} \begin{cases} \sf{ The \:First \:number\:is\:5x\:= \: 5 \times 6 \:=30}& \\\\ \sf{ The\:Second \:number\:=9x\:=9\times 6 \:= 54.}\end{cases} \\\\

\dag{\underline {\sf{\large { Hence-: }}}}\\\\

  • \boxed{\star{\bigstar{\underline {\sf{ \:The\:two\:numbers\:are\:30\:and\:54. }}}}}\\\\

  • \boxed{\star{\bigstar{\underline {\sf{ \:The\:smallest \:numbers\:is\:30\:. }}}}}\\\\

______________________________________________

\dag{\underline {\sf{\large { Verification♡: }}}}\\\\

  • \sf{\large {\underline {\star{\bigstar {\: Equation \:=5x + 9x = 84  }}}}}\\\\

\star{\bigstar {\sf{\large { Here, }}}}\\\\

  • \longrightarrow{\sf{ \:x = 6  }}\\\\

\star{\bigstar {\sf{\large { Putting\:x=6\:in\:Equation. }}}}\\\\

  • \sf{\large {\underline {\star{\bigstar {\: Equation \:=5x + 9x = 84  }}}}}\\\\

\star{\bigstar {\sf{\large { Now -: }}}}\\\\

  • \longrightarrow{\sf{ \:5 \times 6 + 9 \times 6 = 84  }}\\\\

  • \longrightarrow{\sf{ \:30 + 9 \times 6 = 84  }}\\\\

  • \longrightarrow{\sf{ \:30+ 54 = 84  }}\\\\

  • \longrightarrow{\sf{ \:84 = 84  }}\\\\

\star{\bigstar {\sf{\large { Therefore -: }}}}\\\\

  • \underline{\dag {\sf{\large { LHS=RHS  }}}}\\\\

  • \underline{\dag {\sf{\large { Hence\: ,Verified}}}}\\\\

_____________________♡_________________________

Similar questions