Math, asked by suprabhdwivedi, 11 months ago

If two numbers are respectively 20% and 50% of a third
number, what is the percentage of the first number to the
Second​

Answers

Answered by recreations
29

Answer:

let third number x

Step-by-step explanation:

than first no

x of 20/100

x/5

than second no

x of 50/100

x/2

than the % of first number to second is

(x/5×100)/x/2

20x×2/x

40 % ok

Answered by Sauron
52

\mathfrak{\large{\underline{\underline{Answer:}}}}

The percentage of First number to second Number is 40%.

\mathfrak{\large{\underline{\underline{Step-by-step\: explanation}}}}

\textsf{\underline{\underline{Given : }}}

\textsf{First number is = 20\% of third}

\textsf{Second number is = 50\% of third}

\textsf{\underline{\underline{To find :}}}

\textsf{Percentage of the first number to the Second}

\textsf{\underline{\underline{Solution :}}}

\textsf{Let the third number be as y}

\textbf{\small{\underline{First Number - }}}

\sf{\longrightarrow} \: 20\% \: of \: y \\  \\ \sf{\longrightarrow} \:  \frac{20}{100} \times y \\  \\ \sf{\longrightarrow} \:  \frac{20y}{100} \: .....{\rm{\gray{ \: (First \: Number)}}}

\rule{300}{1.5}

\textbf{\small{\underline{Second Number -}}}

\sf{\longrightarrow} \: 50\% \: of \: y \\  \\ \sf{\longrightarrow} \:  \frac{50}{100} \times y \\  \\ \sf{\longrightarrow} \:  \frac{50y}{100}  \: ......\rm{\gray{(Second \: Number)}}

\rule{300}{1.5}

\textsf{Percentage of First number to second Number -}

\sf{\longrightarrow} \:  \dfrac{First \: Number}{Second \: Number} \times 100 \\  \\ \sf{\longrightarrow} \:  \left(\dfrac{ \frac{20y}{100}}{ \frac{50y}{100}}\right)  \times 100 \\  \\ \sf{\longrightarrow} \:  \left(\frac{20y}{\cancel{100}} \times  \frac{\cancel{100}}{50y}\right) \times 100 \\  \\ \sf{\longrightarrow} \:  \frac{2y}{5y} \times 100 \\  \\  \sf{\longrightarrow} \:  \frac{200y}{5y}  \\  \\ \sf{\longrightarrow} \:  40\%

\therefore The percentage of First number to second Number is 40%.

Similar questions