. If two opposite vertices of a square are (5, 4) and (1-6), find the coordinates of its
remaining two vertices.
Answers
Answer:
Let B (x, y).
We have AB = BC
Squaring both sides
=> AB² = BC²
=> (x-5)2 +(y-4)2 = (x-1)2 +(y-6)2
=> x² +25 -10x +y² +16 - 8y = x² +1 -2x + y² +36 -12y
=> 4 - 8x +4y =0
=>2x - y =1 .........(1)
also AC² = (5-1)²+ (4-6)² = 16 + 4 = 20
In right triangle ABC, by Pythagoras theorem,
AC² = AB²+BC²
=> AC² = 2AB²
=> 20 = 2 ( (x-5)² +(y-4)² )
=> 20 = 2 ( x² + 25 -10x+ y² +16 -8y )
=> 10= x² + 25 -10x+ y² +16 -8y
=> x² -10x+ y² -8y + 31 =0
=> x² -10x+ (2x+1)² - 8(2x+1) + 31 =0 {using eq 1}
=> x² -10x+ 4x² + 1 + 4x -16x-8 + 31 =0
=>5 x² -22x +24 =0
D = b² -4ac
=> D = (-22)² - 4(5)(24)
=> D = 484 - 480
=> D =4
=> D1/2 = 2
x = (-b+D1/2) / 2a , (-b - D1/2) / 2a
=> x = (22 +2) / 10 , (22-2) / 10
=> x = 2.4 , 2
=> y = 2x+1 , => y = 5.8 , 5
HOPE THIS HELPS YOU!!
PLEASE MARK ME AS THE BRAINLIEST
Step-by-step explanation: