Math, asked by nxndxnx05, 3 months ago

if two opposite vertices of a square are 5,4 and 1, -6 find the coordinates of its remaining two vertices​

Answers

Answered by gurnoorsingh5062
0

Answer:

sorry

Step-by-step explanation:

but I don't know this answer

Answered by mathdude500
4

Given Question :-

  • If the two opposite vertices of a square are (5,4) and (1, -6), find the coordinates of its remaining two vertices.

\large\underline{\bold{Solution-}}

Given :-

  • Two opposite vertices of a square are (5,4) and (1, -6).

To find :-

  • The coordinates of its remaining two vertices.

Formula Used :-

Distance Formula :-

Let us assume a line segment joining the points A and B, then distance between A and B is given by

\rm\:AB =  \sqrt{ {(x_2-x_1)}^{2}  +  {(y_2-y_1)}^{2} }

 \tt \: where \: coordinates \: are \: A(x_1,y_1)  \: and \:  B(x_2,y_2).

Calculation :-

  • Let ABCD be a square and let A(5, 4) and C(1, - 6) be the given angular points.

  • Let the coordinates of vertex B be (x, y).

Since,

  • ABCD is a square.

  • ⇛ AB = BC

On squaring both sides, we get

  • ⇛AB² = BC²

So, by using distance formula, we get

 \rm {(x - 5)}^{2}  +  {(y - 4)}^{2}  =  {(x - 1)}^{2}  +  {(y + 6)}^{2}

 \rm \:  {(x - 5)}^{2}  -  {(x - 1)}^{2}  =  {(y + 6)}^{2}  -  {(y - 4)}^{2}

 \rm \: (x - 5 + x - 1)(x - 5 - x + 1) = (y + 6 + y - 4)(y + 6 - y + 4)

 \rm \: (2x - 6)( - 4) = (2y  + 2)(10)

 \rm \:  - 8x + 24 = 20y + 20

 \rm \: 8x + 20y = 4

 \rm \: 2x + 5y = 1

 \therefore \: x \:  =  \: \dfrac{1 - 5y}{2}  -  -  - (1)

Again,

  • In right triangle ABC,

Using Pythagoras Theorem, we have

  • AB² + BC² = AC²

Therefore,

By using Distance Formula, we get

 \rm {(x - 5)}^{2}  +  {(y - 4)}^{2}+ {(x - 1)}^{2}  +  {(y + 6)}^{2}  =  {(5 - 1)}^{2}  +  {(4 + 6)}^{2}

 \rm \:  {2x}^{2}  +  {2y}^{2}  - 12x + 4y + 78 = 116

 \rm \:  {x}^{2}  +  {y}^{2}  - 6x + 2y - 19 = 0

  • On substituting the value of x evaluated in equation (1), we get

 \rm \: \bigg(\dfrac{ 1- 5y}{2}  \bigg) ^{2}   +  {y}^{2}  - 6\bigg(\dfrac{1 - 5y}{2}  \bigg)   + 2y - 19 = 0

 \rm \: \dfrac{ {25y}^{2} + 1 - 10y }{4}  +  {y}^{2}   +  15y  -  3 + 2y - 19 = 0

 \rm \: \dfrac{ {25y}^{2} + 1 - 10y }{4}  +  {y}^{2}   + 17y - 22 = 0

 \rm \: \dfrac{ {25y}^{2} + 1 - 10y +  {4y^{2}  +  68y - 88}  }{4}   = 0

 \rm \:  {29y}^{2}   + 58y - 87 = 0

 \rm \: 29( {y}^{2}  + 2y - 3) = 0

 \rm \:  {y}^{2}  + 3y - y - 3 = 0

 \rm \: y(y + 3) - 1(y + 3) = 0

 \rm \: (y + 3)(y - 1) = 0

\bf :\implies\:y \:  =  \:  - \:  3 \:  \:  \: or \:  \:  \:  \: y \:  =  \: 1

So,

On substituting the values of y in equation (1), we get

\begin{gathered}\boxed{\begin{array}{c|c} \bf y & \bf x = \dfrac{1 - 5y}{2}  \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf  - 3 & \sf 8 \\ \\ \sf 1 & \sf  - 2 \end{array}} \\ \end{gathered}

So,

  • The opposite remaining vertices of the square be

\begin{gathered}\begin{gathered}\bf \:Opposite  \: vertices  \: are  \: \begin{cases} &\sf{(8, \:  -  \: 3)} \\ &\sf{( -  \: 2, \: 1)} \end{cases}\end{gathered}\end{gathered}

Additional Information :-

1. Section Formula :-

Let us assume a line segment joining the points A and B and let C (x, y) be any point which divides the line segment joining the points A and B internally in the ratio m : n, then coordinates of C is given by

{\underline{\boxed{\rm{\quad \Big(x, y \Big) = \Bigg(\dfrac{mx_2 + nx_1}{m + n} \dfrac{my_2 + ny_1}{m + n}\Bigg) \quad}}}}

2. Midpoint Formula :-

Let us assume a line segment joining the points A and B and let C (x, y) be Midpoint of line segment joining the points A and B, then coordinates of midpoint C is given by

{\underline{\boxed{ \rm(x, \: y) = \rm{ \bigg(\quad \dfrac{x_1 + x_2}{2} \; ,\; \dfrac{y_1 + y_2}{2} \quad \bigg)}}}}

Similar questions