If two particles of equal masses have kinetic energy in the ratio 1 : 4. The ratio of their de Broglie wavelength will be
Answers
Explanation:
2
1
mv
2
=E
mv=
2Em
De-broglie wavelength
λ=
mv
h
λ
m
=
2E×m
h
λ
2m
=
2×E×2m
h
λ
2m
λ
m
=
1
2
Explanation:
Given :
Ratio of Kinetic Energies of two particles having same mass is 1 : 4
To Find :
Ratio of their De-Broglie wavelength
Solution :
The relation between Kinetic energy and de-broglie wavelength is given by ,
{\boxed {\rm{ \lambda = \frac{h}{ \sqrt{2mKE} } }}}
λ=
2mKE
h
Where ,
λ is wavelength
h is planck's constant
m is mass
KE is Kinetic Energy
We are given that the particle's masses are equal so let the masses be 'm' and 'm'
Let ,
Kinetic energy of the first particle be (KE)₁
Kinetic energy of second particle be (KE)₂
Debriglie wavelength of first particle be λ₁
De-broglie wavelength of second particke be λ₂
We have ,
(KE)₁ : (KE)₂ = 1 : 4
Let
(KE)₁ = x , (KE)₂ = 4x
Now ,
\begin{gathered} : \implies \sf \: \dfrac{ \lambda_1}{ \lambda_2} = \dfrac{ \frac{h}{ \sqrt{2m(KE)_1} } }{ \frac{h}{ \sqrt{2m(KE)_2} }} \\ \\ : \implies \sf \: \frac{\lambda_1}{\lambda_2} = \dfrac{ \frac{1}{ \sqrt{2m(x)} } }{ \frac{1}{ \sqrt{2m(4x)} } } \\ \\ : \implies \sf \: \dfrac{ \lambda_1}{\lambda_2} = \frac{ \sqrt{2m(4x)} }{ \sqrt{2m(x)} } \\ \\ : \implies \sf \: \frac{\lambda_1}{ \lambda_2} = \frac{ \sqrt{4x} }{ \sqrt{x} } \\ \\ : \implies \sf \: \frac{ \lambda_1}{ \lambda_2} = \frac{2 \sqrt{x} }{ \sqrt{x} } \\ \\ : \implies \sf \: \frac{ \lambda_1}{ \lambda_2} = \frac{2}{1} \\ \\ : \implies \sf {\boxed {\sf{ \blue {\lambda_1 : \lambda_2 = 2 : 1}}}}\end{gathered}
:⟹ sum is in picture
∴ The ratio of De-broglie wavelength of the given particles is 2 : 1