Math, asked by Sagar14817, 1 year ago

If two polynomials x^2+px+q andx^2+mx+n has a common factor (x+a), then prove that, a=n-q/m-p

Answers

Answered by rakeshmohata
2
Hope u like my process
=====================

 =  > f(x) =  {x}^{2}  + px + q \\  \\  =  > g(x) =  {x}^{2}  + mx + n \\  \\
If (x +a) is a factor of f(x) and g(x) , then,

f(x) =0 ; g(x) = 0____(when x = - a)

So,.
=-=-=-
 =  > f(x) =  {x}^{2}  + px + q \\  \\ or. \:  \: 0 =  {( - a)}^{2}  + p( - a) + q \\  \\ or. \:  \:  {a}^{2}   - pa + q = 0 \\  \\ or. \:  \:  {a}^{2}  = pa - q........(1)
Again,
=-=-=-=-=
 =  > g(x) =  {x}^{2}  + mx + n \\  \\ or. \:  \: 0 =  {( - a)}^{2}  + m( - a) + n \\  \\ or. \:  \:  {a}^{2}  - ma + n = 0 \\  \\ or. \:  \:  {a}^{2}  = ma  -  n.....(2)
Comparing equation (1) and (2). We get
______________________________

 =  > pa - q = ma - n \\  \\ or. \:  \: ma - pa = n - q \\  \\ or. \:  \: a(m - p) = (n - q) \\  \\ or. \:  \: a =  \frac{n - q}{m - p} .... < proved >  ....
_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-
Hope this is ur required answer

Proud to help you
Answered by BeautifulWitch
2

Answer:

Hope this helps you ✌️✌️

Attachments:
Similar questions