if two positive integer p and q are written as p=a2 b3 and q = a2 b;a,b prime number, then find LCM (q,p)
Answers
Hey Mate!!
P=a²b³
P=a²b³q=a³b
P=a²b³q=a³bHCF (p,q) =a²b
P=a²b³q=a³bHCF (p,q) =a²bLCM (p.q)=a³b³
P=a²b³q=a³bHCF (p,q) =a²bLCM (p.q)=a³b³As we know that HCF(p,q)xLCM(p,q)=a²bxa³b³
P=a²b³q=a³bHCF (p,q) =a²bLCM (p.q)=a³b³As we know that HCF(p,q)xLCM(p,q)=a²bxa³b³=a⁵b⁴ ---------- equation 1
P=a²b³q=a³bHCF (p,q) =a²bLCM (p.q)=a³b³As we know that HCF(p,q)xLCM(p,q)=a²bxa³b³=a⁵b⁴ ---------- equation 1pq=a²b³xa³b
P=a²b³q=a³bHCF (p,q) =a²bLCM (p.q)=a³b³As we know that HCF(p,q)xLCM(p,q)=a²bxa³b³=a⁵b⁴ ---------- equation 1pq=a²b³xa³b=a⁵b⁴-----------equation 2
P=a²b³q=a³bHCF (p,q) =a²bLCM (p.q)=a³b³As we know that HCF(p,q)xLCM(p,q)=a²bxa³b³=a⁵b⁴ ---------- equation 1pq=a²b³xa³b=a⁵b⁴-----------equation 2from 1 and 2
P=a²b³q=a³bHCF (p,q) =a²bLCM (p.q)=a³b³As we know that HCF(p,q)xLCM(p,q)=a²bxa³b³=a⁵b⁴ ---------- equation 1pq=a²b³xa³b=a⁵b⁴-----------equation 2from 1 and 2we can say that HCF(p,q)xLCM(p,q)=pq