If two positive integers p and q are written as
2 3 3 p a b and q a b; = =
a, b are prime
numbers, then verify:
LCM (p, q) × HCF (p, q) = pq
Answers
Answered by
2
Hi ,
p = a²b³
q = a³b
HCF ( p,q ) = a²b
[ ∵Product of the smallest power of each
common prime factors in the numbers ]
LCM ( p , q ) = a³b³
[ ∵ Product of the greatest power of each
prime factors , in the numbers ]
Now ,
HCF ( p , q ) × LCM ( p , q ) = a²b × a³b³
= a∧5b∧4 --------( 1 )
[∵ a∧m × b∧n = a∧m+n ]
pq = a²b³ × a³b
= a∧5 b∧4 ---------------( 2 )
from ( 1 ) and ( 2 ) , we conclude
HCF ( p , q ) × LCM ( p ,q ) = pq
Hope This Helps :)
p = a²b³
q = a³b
HCF ( p,q ) = a²b
[ ∵Product of the smallest power of each
common prime factors in the numbers ]
LCM ( p , q ) = a³b³
[ ∵ Product of the greatest power of each
prime factors , in the numbers ]
Now ,
HCF ( p , q ) × LCM ( p , q ) = a²b × a³b³
= a∧5b∧4 --------( 1 )
[∵ a∧m × b∧n = a∧m+n ]
pq = a²b³ × a³b
= a∧5 b∧4 ---------------( 2 )
from ( 1 ) and ( 2 ) , we conclude
HCF ( p , q ) × LCM ( p ,q ) = pq
Hope This Helps :)
Similar questions