Math, asked by Anjanesh, 1 year ago

If two positive integers p and q are written as p=a^2b^3 and q=a^3b, a and b are prime numbers, then verify LCM(p,q)×HCF (p,q)=pq.

Answers

Answered by hukam0685
16

p =  {a}^{2}  {b}^{3}  \\ q =  {a}^{3}b \\ lcm(p \: q ) =  {a}^{3}  {b}^{3}  \\ hcf(p \: q) =  {a}^{2} b \\ lcm(p \: q) \times hcf(p \: q) =  {a}^{3}  {b}^{3}  \times  {a}^{2} b \\  =  {a}^{5}  {b}^{4}  \:  \:  \:  \:  \: eq1 \\ p \times q =  {a}^{2}  { b}^{3}  \times  {a}^{3} b \\  =  {a}^{5}  {b}^{4}  \:  \:  \: eq2 \\ eq1 = eq2 \\ hence \: prove
Similar questions