if two positive integers p and q are written as p = a^4 b^5 and q =a^2 b where a , b are prime numbers then find HCF of (p,q)
Answers
Answered by
1
Step-by-step explanation:
this is the answer of this question
Attachments:
Answered by
1
H.C.F.(p,q)=a
H.C.F.(p,q)=a 2
H.C.F.(p,q)=a 2 b
H.C.F.(p,q)=a 2 bL.C.M.(p,q)=a
H.C.F.(p,q)=a 2 bL.C.M.(p,q)=a 3
H.C.F.(p,q)=a 2 bL.C.M.(p,q)=a 3 b
H.C.F.(p,q)=a 2 bL.C.M.(p,q)=a 3 b 2
H.C.F.(p,q)=a 2 bL.C.M.(p,q)=a 3 b 2
H.C.F.(p,q)=a 2 bL.C.M.(p,q)=a 3 b 2 L.C.M.(p,q)×H.C.F.(p,q)=a
H.C.F.(p,q)=a 2 bL.C.M.(p,q)=a 3 b 2 L.C.M.(p,q)×H.C.F.(p,q)=a 5
H.C.F.(p,q)=a 2 bL.C.M.(p,q)=a 3 b 2 L.C.M.(p,q)×H.C.F.(p,q)=a 5 b
H.C.F.(p,q)=a 2 bL.C.M.(p,q)=a 3 b 2 L.C.M.(p,q)×H.C.F.(p,q)=a 5 b 3
H.C.F.(p,q)=a 2 bL.C.M.(p,q)=a 3 b 2 L.C.M.(p,q)×H.C.F.(p,q)=a 5 b 3 pq=a
H.C.F.(p,q)=a 2 bL.C.M.(p,q)=a 3 b 2 L.C.M.(p,q)×H.C.F.(p,q)=a 5 b 3 pq=a 5
H.C.F.(p,q)=a 2 bL.C.M.(p,q)=a 3 b 2 L.C.M.(p,q)×H.C.F.(p,q)=a 5 b 3 pq=a 5 b
H.C.F.(p,q)=a 2 bL.C.M.(p,q)=a 3 b 2 L.C.M.(p,q)×H.C.F.(p,q)=a 5 b 3 pq=a 5 b 3
H.C.F.(p,q)=a 2 bL.C.M.(p,q)=a 3 b 2 L.C.M.(p,q)×H.C.F.(p,q)=a 5 b 3 pq=a 5 b 3
H.C.F.(p,q)=a 2 bL.C.M.(p,q)=a 3 b 2 L.C.M.(p,q)×H.C.F.(p,q)=a 5 b 3 pq=a 5 b 3 Therefore, L.C.M.(p,q)×H.C.F.(p,q)=pq.
H.C.F.(p,q)=a 2 bL.C.M.(p,q)=a 3 b 2 L.C.M.(p,q)×H.C.F.(p,q)=a 5 b 3 pq=a 5 b 3 Therefore, L.C.M.(p,q)×H.C.F.(p,q)=pq.Okk By
Similar questions