Math, asked by chicku788, 7 months ago

If two positive integers p and q are written as p=a2×b^3 and q=a^3×b, a and b are prime numbers, then verify: LCM(p,q) × HCF(p,q)=p,q​

Answers

Answered by RvChaudharY50
189

Solution :-

  • p = a² * b³
  • q = a³ * b
  • a and b are prime numbers . ( That means no common factor Possible).

LCM(p,q) :-

→ p = a * a * b * b * b

→ q = a * a * a * b

LCM = b * b * b * a * a * a = *

HCF(p,q) :-

→ p = a * a * b * b * b

→ q = a * a * a * b

HCF = a * a * b = * b

Therefore,

LCM(p,q) × HCF(p,q) = p × q

→ (b³ * a³) × (a² * b) = (a² * b³) × (a³ * b)

→ (b³ * b) × (a² * a³) = (a² * a³) × (b³ * b)

→ b⁴ * a⁵ = a⁵ * b⁴

→ a⁵ * b⁴ = a⁵ * b⁴

LHS = RHS . (Verified).

Answered by Anonymous
190

ANSWER

\large\underline\bold{GIVEN,}

\sf\dashrightarrow TWO\: POSITIVE\:INTEGERS:-p\:AND\:q

\sf\dashrightarrow p= a^2 \times b^3

\sf\dashrightarrow q=  a^3 \times b

\sf\dashrightarrow a\:and\: b\: are\: prime\:numbers.

\red{\text{NOTE:- prime number doesn't has any common factors.}}

✯.L.C.M,

\sf\therefore p= \boxed{a}\times \boxed{a} \times \boxed{b}\times b\times b

\sf\therefore q= \boxed{ a} \times \boxed{a} \times a \times \boxed{b}

\sf\implies L.C.M= a\times a\times b\times b\times b \times a

\sf\implies L.C.M= a^3b^3

\large{\boxed{\bf{ \star\:\:L.C.M= a^3b^3 \:\: \star}}}

✯.H.C.F,

\sf\therefore p= \boxed{a}\times \boxed{a} \times \boxed{b}\times b\times b

\sf\therefore q= \boxed{ a} \times \boxed{a} \times a \times \boxed{b}

\sf\implies H.C.F= a\times a\times b

\sf\implies H.C.F= a^2 b

\large{\boxed{\bf{ \star\:\: H.C.F= a^2b\:\: \star}}}

THEREFORE,

WE KNOW

\sf\therefore H.C.F= a^2b,L.C.M= a^3b^3

NOW,

VERIFICATION,

\bf{\boxed{\bf{ \star\:\: L.C.M \times H.C.F= PRODUCT\:OF\:THE\:POSITIVE INTEGERS(p \times q)\:\: \star}}}

\sf\therefore H.C.F \times L.C.M= p \times q

\sf\implies ( a^2b ) \times (a^3b^3) = (a^2b^3)\times (a^3b)

\sf\implies a^2 \times b\times a^3\times b^3= a^2\times b^3\times a^3 \times b

\sf\implies a^2\times a^3 \times b \times b^3= a^2 \times a^3 \times b\times b^3

\sf\therefore a^5b^4= a^5b^4

\sf\therefore L.H.S= R.H.S

HENCE PROVED

_____________________

Similar questions