Math, asked by sudhasaji76, 4 months ago

.

If two positive integers ‘p’ and ‘q’ are written as p = a4b5

and q = a2b where a, b are prime

numbers then find HCF of (p, q).​

Answers

Answered by ItzVenomKingXx
1

 \bf p=a {}^{2} b {}^{3}  \\ \bf p = a.a.b.b.b \\ \bf q=a {}^{3} b \\ \bf q=a.a.a.b \\ \bf H.C.F (p,q) = a.a.b \\ \bf  H.C.F (p,q) = a b \\ \bf L.C.M (p,q) = a.a.a.b.b.b  \\ \bf L.C.M (p,q) = a {}^{2} b {}^{3}   \\ \bf we \:  prove \:  that, \\ \bf L.C.M \:  (p,q) \:   \times  \:  H.C.F  \: (p,q) = p q  \\  \bf L.H.S = L.C.M (p,q)  \times  H.C.F (p,q) \\ \bf L.H.S = (a {}^{3}  b {}^{3} )  \times (a {}^{2} b) \\ \bf L.H.S = a {}^{5}  b {}^{4}  \\ \bf R.H.S = (a {}^{2}  b {}^{3} )  \times  (a {}^{3}  b) \\ \bf R.H.S = a {}^{5}  {b}^{4}

Similar questions