Math, asked by Vanianala9, 11 months ago

if two roots of 2x^3-11x^2+ 12x+9=0 are equal ,then the roots are

Answers

Answered by amitnrw
0

Given : two roots of 2x^3-11x^2+ 12x+9=0 are equal  

To Find : roots

Solution:

2x³  - 11x²  + 12x  + 9  =  0

Let say roots are α , α , β

Sum of roots 2 α + β =  -(-11/2) = 11/2

=> β = (11/2  -  2 α)

Products of roots =  α²β = -9/2

α² + 2αβ = 12/2  

=> α² + 2αβ = 6

=> α² + 2α (11/2  -  2 α) = 6

=> α²  + 11α  - 4α² = 6

=> 3α² - 11α  + 6 = 0

=> 3α² - 9α  - 2α + 6 = 0

=> 3α(α  - 3) - 2(α  - 3) = 0

=> (α  - 3)(3α - 2) = 0

=> α =  3  , 2/3

α =  3 , β = -1/2

α =  2/3 , β = 29/6  ( not possible as α²β is - ve )

roots are  3 , 3 , - 1/2

2x³  - 11x²  + 12x  + 9  =  0 = (x - 3)²(2x + 1)

Learn More:

If the product of two roots of the equation 4x4 - 24x2 + 31x? + 6x - 8 ...

https://brainly.in/question/18324817

If a, b, c are three real roots of the equation x3−6x2+5x−1=0x3-6x2 ...

https://brainly.in/question/17845468

Similar questions