Math, asked by dubey15, 4 months ago

if two roots of a quadratic equation
(1 + {m}^{2} ) {x}^{2}  + 2mxc + ( {c }^{2}  -  {a}^{2} ) = 0
are real and equal ,then let us prove that
 {c }^{2}  =  {a}^{2} (1 +  {m}^{2} )

Answers

Answered by MaIeficent
28

Step-by-step explanation:

Given:-

  • A quadratic equation (1 + m²)x² + 2mxc + (c² - a²) = 0.

  • The roots of the quadratic equation are real and equal.

To Prove:-

  • c² = a²(1 + m²)

Concept used:-

For a quadratic equation ax² + bx + c = 0

If the roots are real and equation then,

\sf \dashrightarrow \boxed{\sf b^2 - 4ac = 0}

Solution:-

Comparing (1 + m²)x² + 2mxc + (c² - a²) = 0 with ax² + bx + c = 0

Here:-

• a = 1 + m²

• b = 2mc

• c = c² - a²

\sf \implies {b}^{2}  - 4ac = 0

\sf \implies {(2mc)}^{2}  -  \big[4( {c}^{2}  -  {a}^{2})(1 +  {m}^{2}) \big] = 0

\sf \implies {(2mc)}^{2}   =  4( {c}^{2}  -  {a}^{2})(1 +  {m}^{2})

\sf \implies4 {m}^{2} {c}^{2}  =  4( {c}^{2}  -  {a}^{2})(1 +  {m}^{2})

\sf \implies {m}^{2} {c}^{2}  =  ( {c}^{2}  -  {a}^{2})(1 +  {m}^{2})

\sf \implies  \cancel{{m}^{2} {c}^{2} } =  {c}^{2}  +   \cancel{{m}^{2} {c}^{2} } -  {a}^{2} -  {a}^{2}  {m}^{2}

\sf \implies  {c}^{2} - {a}^{2} -  {a}^{2}  {m}^{2} = 0

\sf \implies  {c}^{2}  = {a}^{2}  + {a}^{2}  {m}^{2}

\sf \implies  {c}^{2} = {a}^{2}(1  +  {m}^{2} )

\sf  \large\dashrightarrow \underline{ \boxed{{  \therefore \: \bf{c}^{2} = {a}^{2}(1  +  {m}^{2} )}}}

Hence Proved.

Answered by ILLUSTRIOUS27
1

Given-

  •  \bf(1 + {m}^{2} ) {x}^{2} + 2mxc + ( {c }^{2} - {a}^{2} ) = 0
  • In the above equation,roots are equal and real

To prove-

 \bf{c }^{2} = {a}^{2} (1 + {m}^{2} )

Concept used-

  •  \bf \: d =  {b}^{2}  - 4ac
  • and d=0

Proof-

We know,

 \bf \: d =  {b}^{2}  - 4ac

Here,

  \bf\rightarrow \: a = 1 +  {m}^{2} \:  \:  \:  \:  \:   \\    \bf \rightarrow \: b = 2mc  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \\  \rightarrow \bf \: c =  {c}^{2}  -  {a}^{2} \:  \:  \:  \:  \:    \\  \because \bf roots \: are \: equal \:   \\  \bf \therefore \: d = 0 \\  \\  \bf \: 0 =  {(2mc)}^{2}   - 4(1 +  {m}^{2})( {c}^{2}   -  {a}^{2} ) \:  \:  \:  \:  \:  \\   \\  \implies\bf \: 4( {c}^{2}  -  {a}^{2}  +  {m}^{2}  {c}^{2}  -  {m}^{2}  {a}^{2}) = 4 {m}^{2}  {c}^{2}   \\  \\  \implies \bf  {c}^{2}  -  {a}^{2}  +  {m}^{2}  {c}^{2}  -  {m}^{2}  {a}^{2}  =  {m}^{2}  {c}^{2}  \:  \:  \:  \:  \:  \:  \:  \:  \:   \\  \\  \bf \implies \:  {c}^{2}  -  {a}^{2} -  {m}^{2}   {a}^{2}  = 0 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \bf \implies  {c}^{2}  =  {a}^{2}  +  {m}^{2} {a}^{2} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \\  \\   \implies\underline{ \boxed{ \huge{ { \bf \: c}^{2} =  {a}^{2}  (1 +  {m}^{2} )}}}  \\  \\   \bf \underline{hence \: proved}

Similar questions