Math, asked by Darshujeevu143darsha, 2 months ago

if two side of the right triangle are (x+3)and (x+1)and it's hypotenuse is 100 find the value of x​

Answers

Answered by Anonymous
18

Correct Question:-

If two side of the right triangle are (x+3)and (x+1)and it's hypotenuse is 10 find the value of x

Given :-

  • (x + 3) , (x + 1) are the sides of right angle triangle
  • Hypotenuse is 10

To find:-

  • \sf{Value\:of \:x }

Solution :-

\sf{As\: we \:know\: that\: from \:Pythagoras\: Theorem , }

\sf{\:In \:a \:right \:angle\: triangle\: ,}

\sf (side)^2 + (side)^2 = (hypotenuse)^2

\sf (x+3)^2+(x+1)^2 =(10)^2

\sf (x)^2+2(x)(3) +(3)^2+ (x)^2+2(x)(1) +(1)^2= 10\times10

\sf x^2+6x+9 +x^2+2x+1 =100

\sf x^2+x^2+6x+2x +9+1 = 100

\sf 2x^2+8x+10=100

\sf 2x^2 +8x = 100-10

\sf 2x^2+8x = 90

\sf 2x^2+8x -90=0

\sf Take\: common\: "2"

\sf2(x^2+4x-45)=0

\sf x^2+4x-45=0

\sf Solving \: the \:Quadratic \: equation\: by \: Quadratic\: formula

\sf x = \sf\dfrac{-b\pm\sqrt{b^2-4ac} }{2a}

\sf a= 1\\b =4\\c = -45

\sf x=\dfrac{-4\pm\sqrt{(4)^2-4(1)(-45)} }{2(1)}

\sf x =\dfrac{-4\pm\sqrt{16+180} }{2}

\sf x = \dfrac{-4\pm\sqrt{196} }{2}

\sf x= \dfrac{-4\pm 14}{2}

\sf x= \dfrac{-4+14}{2} , \dfrac{-4-14}{2}

\sf x= \dfrac{10}{2} , \dfrac{-18}{2}

\sf x = 5, -9

Verification :-

\sf We \: got\: the\: value\: of\: x \: Since\: , It\: should\: satisfies \: the \:Pythagoras\:theorem

\sf At \: x = 5

\sf (Side)^2+(Side)^2 = (hypotenuse)^2

\sf(x+3)^2+(x+1)^2 = (10)^2

\sf(5+3)^2+(5+1)^2= 100

\sf(8)^2+(6)^2= 100

\sf 64+36 =100

\sf 100=100

\sf1st\: Condition \: Verified!

\sf At\: x= -9

\sf (Side)^2+(Side)^2 = (hypotenuse)^2

\sf(x+3)^2+(x+1)^2 = (10)^2

\sf(-9+3)^2+(-9+1)^2 =1 00

\sf (-6)^2+(-8)^2= 100

\sf 64+36 =100

\sf 100=100

\sf 2nd \: Condition \: also \: verified!

Similar questions