Math, asked by aryan7920, 1 year ago


If two sides of a right-angled triangular park be 24 m and 10 m respectively, find the lens
its hypotenuse.
In a right A XYZ right angled at Y, XZ = 37 m, XY = 12 m. Find YZ.

Answers

Answered by ShreyaSingh31
50

\bf{\huge{\underline{\boxed{\sf{\green{Answer:}}}}}}

For first Δ ABC,

\bf{\underline{\sf{\red{Given:}}}}

  • Side 1 = AB = 24 m
  • Side 2 = BC = 10 m

\bf{\underline{\sf{\red{To\:find\::}}}}

  • Length of the hypotenuse = AC

\bf{\underline{\sf{\red{Solution:}}}}

Δ ABC is a right angled triangle.

m\angleABC = 90°

•°• By Pythagoras Theorem,

Hypotenuse² = {S_1\:^2} + {S_2\:^2}

Hypotenuse ² = AB² + BC²

Hypotenuse ² = 24² + 10²

Hypotenuse ² = 576 + 100

Hypotenuse ² = 676

Hypotenuse = \sqrt{676}

Hypotenuse = 26 m

Length of the hypotenuse, AC = 26 m

In Δ XYZ,

\bf{\underline{\sf{\red{Given:}}}}

  • Side 1 = XY = 12 m
  • Hypotenuse = XZ = 37 m

\bf{\underline{\sf{\red{To\:find:}}}}

  • Length of Side 2 = YZ

\bf{\underline{\sf{\red{Solution:}}}}

Δ XYZ is a right angled triangle.

m\angleXYZ = 90°

° By Pythagoras Theorem,

Hypotenuse² = {S_1\:^2} + {S_2\:^2}

XZ² = XY² + YZ²

37² = 12² + YZ²

1369 = 144 + YZ²

1369 - 144 = YZ²

1225 = YZ²

\sqrt{1225} = YZ

35 = YZ

Length of YZ = 35 m

Attachments:
Answered by renurenu850
12

Answer:

This is your answer hope it will help you....

Attachments:
Similar questions