If two straight lines intersect each other, then prove that ray opposite to the bisector of one of the angels so formed bisects the vertically opposite angles.
Answers
Answered by
2
Answer:
Given AB and CD are straight lines which intersect at O. OP is the bisector of ∠AO.
To prove: OQ is the bisector of ∠BOD.
Proof: AB, CD and PQ are straight lines which intersect in O.
∠AOP=∠BOQ(vertically opposite angles)
∠COP=∠DOQ(vertically opposite angles)
∠AOP=∠COP(OP is the bisector of ∠AOC)
∴∠BOQ=∠DOQ
Thus, the rate opposite to the bisector of one of the angles thus formed bisects the vertically opposite angle. Similarly, the bisection of ∠AOD also bisects the ∠BOC.
solution
Similar questions