if two tangents inclined at an angle 60 are drawn to a circle of radius 4 cm then length of each tangent
Answers
Answered by
7
Answer:
Lengthofeachtangent=PA=PB=3
3
Step-by-step explanation:
Let \: PA \:and \: PB \: are \: two \: tangentsLetPAandPBaretwotangents
\angle APB = 60\degree \: ( given )∠APB=60°(given)
\angle OPA = \angle OPB = 30\degree∠OPA=∠OPB=30°
\begin{lgathered}In \: \triangle OAP , \\ \angle OAP = 90\degree\: ( Tangent \: radius \: relation )\end{lgathered}
In△OAP,
∠OAP=90°(Tangentradiusrelation)
tan 30\degree = \frac{OA}{PA}tan30°=
PA
OA
\implies \frac{1}{\sqrt{3}} = \frac{3}{PA}⟹
3
1
=
PA
3
\implies PA = 3\sqrt{3}⟹PA=3
3
Therefore.,
\red { Length \: of \: each \: tangent }\green {= PA = PB = 3\sqrt{3}}Lengthofeachtangent=PA=PB=3
3
•••♪
Similar questions