Physics, asked by umang1903, 10 months ago

If two thin uniform rod of lengths L1 and L2 of same material are joined to form ‘T’ shape as shown in the figure, then the distance of centre of mass of the system from centre of mass of first rod of length L1 is given by

Attachments:

Answers

Answered by BrainlyConqueror0901
6

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{y_{C.O.M}=\frac{l_{2}}{4}}}}\\

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt:  \implies Length  \: of \: rods =  l_{1} \: and \:  l_{2} \\  \\ \red{\underline \bold{To \: find :}} \\  \tt:  \implies Distance \: between \: C.O.M \: of \:  l_{1} \: rod \: to \: system \: C.O.M =?

• According to given question :

 \tt \circ \: Centre \: of \: mass \:of \: uniform \: rod =  \frac{l}{2}  \\  \\  \tt \circ \: Let \: C.O.M \: of \: rod \:  l_{1} \: is \: at  \:  point \:A\: and \: is \: connected \: with \: rod \:  l_{2}   \\  \\  \bold{As \: we \: know \: that} \\  \tt:  \implies  y_{C.O.M} =  \frac{ m_{1} y_{C.O.M_{1} } +  m_{2} y_{C.O.M_{2} } }{ m_{1} +  m_{2}  }  \\  \\ \tt:  \implies  y_{C.O.M} =  \frac{ m_{1} \times 0 + m_{2}  \times  \frac{ l_{2 } }{2} }{ m_{1}  + m_{2}}  \\  \\ \tt:  \implies  y_{C.O.M} =  \frac{ m_{2} l_{2} }{2( m_{1}  + m_{2}) }  \\  \\  \tt \circ \: If \: m_{1} =  m_{2} = m \\ \\ \tt:  \implies  y_{C.O.M} =  \frac{m l_{2} }{2 \times 2m}  \\  \\  \green{\tt:  \implies  y_{C.O.M} =  \frac{ l_{2} }{4}}  \\  \\   \green{\tt \therefore C.O.M \: of \: system \: is \:  \frac{ l_{2}}{4}  \: distance \: from \: point \: A}


BrainlyConqueror0901: thnx bro : )
Similar questions