Math, asked by tausif7oo7, 1 year ago

if two towers of height x and y subtend angles of 45 degree and 60 degree respectively at the centre of a line joining their feet then find the ratio of (x+y)and y

Answers

Answered by guptasingh4564
37

Thus, The ratio of \frac{(x+y)}{y} is \frac{1+\sqrt{3} }{\sqrt{3} }

Step-by-step explanation:

Given,

Two towers of height x and y subtend angles of 45° and 60° then

Find the ratio of \frac{(x+y)}{y} =?

From figure,

  tan45=\frac{x}{AO}

x=AO.tan45

And,

  tan60=\frac{y}{BO}

y=BO.tan60

(x+y)=AO.tan45+BO.tan60

              =BO(tan45+tan60)  (∵AO=BO )

\frac{(x+y)}{y} =\frac{BO(tan45+tan60)}{BO.tan60}

           =1+\frac{tan45}{tan60}

           =1+\frac{1}{\sqrt{3} }

           =\frac{1+\sqrt{3} }{\sqrt{3} }

∴ The ratio of \frac{(x+y)}{y} is \frac{1+\sqrt{3} }{\sqrt{3} }

Attachments:
Answered by robinadogra1212
12

Step-by-step explanation:

i guess it will be helpful

glad to help

Attachments:
Similar questions