Math, asked by RockinJRK, 18 days ago

If two vertices of an equilateral triangle are (0, 0) and (0, 2 √3). Find the third vertices.

Answers

Answered by Syamkumarr
1

Answer:

The third vertex is (0, 2√3)

Step-by-step explanation:

Let the third vertex be (x,y)

Since it is an equilateral triangle,

=> all the sides will be equal

=> distance between the vertices are equal

We know that distance between (x₁,y₁) and (x₂,y₂) = √(x₂-x₁)² + (y₂-y₁)² (Distance formula)

Distance between  (0, 0) and (0, 2 √3) = √(0-0)² + (2 √3-0)²

                                                                = √12                                 --- (i)

Distance between  (0, 2 √3) and (x,y) = √(x-0)² + (y-2 √3)²

                                                                = √ x² + y² + 12 -2y√3       ---(ii)

Distance between  (x,y) and (0, 0) = √(0-x)² + (0-y)²

                                                                = √ x² + y²                          ---(iii)

Equating equations (ii)  and (ii)

√ x² + y² + 12 -2y√3 = √ x² + y²        

Squaring both sides,

x² + y² + 12 -2y√3 =  x² + y²  

As  x² + y²  is common on both the sides, we can cancel the term  x² + y²  

=> 12 -2y√3 = 0

=> 12 = 2y√3

=> 6 = y√3

=> 2√3 = y

Equating equations (i)  and (iii)

√ x² + y² = √12  

Squaring both sides,

x² + y² = 12

Substituting the value of y in the above equation

=> x² + ( 2√3)² = 12

=>  x² + 12 = 12

=>  x² = 0

=> x = 0

Therefore, the third vertex is (0, 2√3)

Similar questions