Math, asked by sigh129, 1 year ago

If two vertices of an equilateral triangle be (0,0) (3,root3) find the third vertex

Answers

Answered by sakshikonduru
322
Two vertices of an equilateral triangle are (0, 0) and (3, √3).

Let the third vertex of the equilaterla triangle be (x, y)

Distance between (0, 0) and (x, y) = Distance between (0, 0) and (3, √3) = Distance between (x, y) and (3, √3)

√(x2 + y2) = √(32 + 3) = √[(x - 3)2 + (y - √3)2]

x2 + y2 = 12
x2 + 9 - 6x + y2 + 3 - 2√3y = 12
24 -  6x - 2√3y = 12
- 6x - 2√3y = - 12
3x + √3y = 6
x = (6 - √3y) / 3

⇒ [(6 - √3y)/3]2 + y2 = 12
⇒ (36 + 3y2 - 12√3y) / 9 + y2 = 12
⇒ 36 + 3y2 - 12√3y + 9y2 = 108
⇒ - 12√3y + 12y2 - 72 = 0
⇒ -√3y + y2 - 6 = 0
⇒ (y - 2√3)(y + √3) = 0
⇒ y = 2√3 or - √3

If y = 2√3, x = (6 - 6) / 3 = 0
If y = -√3, x = (6 + 3) / 3 = 3

So, the third vertex of the equilateral triangle = (0, 2√3) or (3, -√3).
Answered by jhangir789
1

The third vertex of the equilateral triangle is, (0,2 \sqrt{3}) \ or (3,-\sqrt{3})

What is the vertex of a triangle?

  • A point where any two sides of a triangle meet, is called a vertex of a triangle.

How do you find the third vertex of an equilateral triangle?

  • Substituting the value of y in equation (1) and equating it to 26. Solving the quadratic equation using the quadratic formula, [-b ± √(b2 - 4ac)]/2a.
  • Hence, the coordinates of the third vertex of the equilateral triangle are ([1 ± √(3)] / 2, [7 ± 5√(3)] / 2).

According to the question:

Two vertices of an equilateral triangle are (0,0) and (3,√3).

Let the third vertex of the equilateral triangle be (x,y).

Distance between (0,0) and (x,y) = Distance between(0,0) and (3,√3) = Distance between (x,y) and (3,√3).

$\sqrt{\left(x^{2}+y^{2}\right)}=\sqrt{\left(3^{2}+3\right)}=\sqrt{(x-3)^{2}+(y-\sqrt{3})^{2}}\\$x^{2}+y^{2}=12\\$x^{2}+9-6 x+y^{2}+3-2 \sqrt{3 y}=12\\$24-6 x-2 \sqrt{3 y}=12$\\$-6 x-2 \sqrt{3 y}=-12$\\$3 x+\sqrt{3 y}=6$\\$x=\frac{6-\sqrt{3 y}}{3}$

\frac{(6-\sqrt{3 y})}{3} 2+y^{2}=12\\$\frac{(36+3 y 2-12 \sqrt{3 y})}{9}+y^{2}=12\\$36+3 y^{2}-12 \sqrt{3 y}+9 y 2=108$\\$-12 \sqrt{3 y}+12 y^{2}-72=0$\\$\sqrt{-3 y}+y 2-6=0$\\$(y-2 \sqrt{3})(y+\sqrt{3})=0$\\$y=2 \sqrt{3}$ or $\sqrt{-3}$\\

If $y=2 \sqrt{3},  x=(6-6) / 3=0$

If $y=2 \sqrt{3}, x=(6-6) / 3=0$

So,the third vertex of the equilateral triangle= (0,2 \sqrt{3}) \ or (3,-\sqrt{3})

Hence, the third vertex are  (0,2 \sqrt{3}) \ or (3,-\sqrt{3})

#SPJ2

Similar questions