Math, asked by saugata25, 8 months ago

If two vertices of an isosceles right triangle are

A(–1, –7) and B(–7, –1), then find coordinates of

third vertex of the triangle ABC [Given ∠C = 90°].​

Answers

Answered by amitnrw
21

Given :   two vertices of an isosceles right triangle ABC are  A(–1, –7) and B(–7, –1),  ∠C = 90°

To Find : coordinates of  C

Solution:

ACB is a right angle triangle at C  and  isosceles triangle

Hence AC = BC

A = ( - 1, -7)

B = (-7 , - 1)

Let say C = ( x, y)

AC & CB are perpendicular to each other

Hence slope of AC * Slope of BC = - 1

=> ( y + 7)/(x + 1)   *  ( y + 1)/(x + 7) = - 1

=> y² + 8y + 7 =  -x² - 8x - 7

=> x² + y²  + 8x + 8y  + 14 = 0

AC² = (x + 1)² + (y + 7)²

BC² = (x + 7)² + (y + 1)²

AC = BC

=> AC² = BC²

=> (x + 1)² + (y + 7)² = (x + 7)² + (y + 1)²

=> x² + 2x + 1 + y² + 49 + 14y  = x² + 14x + 49 + y² + 1 + 2y

=> 12y = 12x

=> x = y

x² + y²  + 8x + 8y  + 14 = 0

=> x² + x²  + 8x + 8x  + 14 = 0

=> x² + 8x + 7 = 0

=> (x + 7)(x + 1) = 0

=> x = - 7 , - 1

=> y = -7 ,   - 1

Hence C  is ( -7 , -7)  or  (-1, - 1)

coordinates of  third vertex of the triangle   ( -7 , -7)  or  (-1, - 1)

Learn More:

In a rectangular coordinate system, what is the area of a triangle ...

https://brainly.in/question/7353700

Three vertices of a rectangle ABCD are A(3,1)

https://brainly.in/question/3782579

Answered by pulakmath007
28

\displaystyle\huge\red{\underline{\underline{Solution}}}

FORMULA TO BE IMPLEMENTED

 \sf{1. \: Distance \:  between \:  two \:  points \:  A( x, y) \:  and  \: (h, k) \:  is}

 =  \sqrt{ {(x -  h)}^{2}  +  {(y - k)}^{2} }

2. Pythagoras theorem states that :

In a right-angled triangle, the square of the hypotenuse side is equal to the sum of squares of the other two sides

GIVEN

  • Two vertices of an isosceles right triangle ABC are A(–1, –7) and B(–7, –1)
  • In the triangle ABC , ∠C = 90°

TO DETERMINE

The coordinates of third vertex of the triangle ABC

CALCULATION

Let ( x, y) be the coordinates of third vertex of the triangle ABC

Here ABC is an isosceles right triangle with ∠C = 90°

So AC = BC

 \implies \:  \sqrt{ {(x + 1)}^{2}  + {(y + 7)}^{2} }  =  \sqrt{ {(x + 7)}^{2}  +  {(y + 1)}^{2} }

 \implies \:  {(x + 1)}^{2}  + {(y + 7)}^{2}  =   {(x + 7)}^{2}  +  {(y + 1)}^{2}

 \implies \:  {x}^{2}  + 2x + 1 +  {y}^{2}  + 14y + 49 =  {x}^{2}  + 14x + 49 +  {y}^{2}  + 2y + 1

 \implies 12x = 12y

 \implies \: \: x = y \:  \: ........(1)

Again using Pythagorean Theorem

 \sf{{(AC)}^{2}   + {(BC)}^{2}   =   {(AB)}^{2} }

 \implies \:  \sf{2{(AC)}^{2}  =  {(AB)}^{2} } \:  \: ........(2)

Again

 \sf{(AB)}^{2}  =  {( - 1 + 7)}^{2}  +  {( - 7 + 1)}^{2}

 \implies \:  \sf{(AB)}^{2}  =36 + 36

 \implies \:  \sf{(AB)}^{2}  =72 \:  \: .....(3)

From Equation (2) using Equation (3)

 \sf{  \implies \:  {(x + 1)}^{2}  + {(y + 7)}^{2}= 72}

 \sf{  \implies \:  {(x + 1)}^{2}  + {(x + 7)}^{2}= 72} \:  \: ( \because \: x = y)

 \sf{  \implies \:2  {x}^{2} + 16x + 14 = 0 }

 \sf{  \implies \:  {x}^{2} + 8x + 7 = 0 }

 \sf{  \implies \:  {x}^{2} + 7x  + x+ 7 = 0 }

 \sf{  \implies \:  x(x+ 7)  + 1( x+ 7) = 0 }

 \sf{  \implies \:  (x+ 7) ( x+ 1) = 0 }

 \sf{Which  \: gives  \:  \: x = - 1, - 7}

From Equation (1)

 \sf{x = - 1   \: \: gives  \:  \: y = - 1}

 \sf{x = - 7   \: \: gives  \:  \: y = - 7}

RESULT

 \sf{Hence  \: the \:  required  \: point  \: is \:  ( - 1, - 1) \:  \: or \:  \: (-7,-7)}

Attachments:
Similar questions