If two vertices of an isosceles right triangle are
A(–1, –7) and B(–7, –1), then find coordinates of
third vertex of the triangle ABC [Given ∠C = 90°].
Answers
Answer:
The coordinates of the third vertex of the isosceles right triangle will be ( - 7, - 7 ) OR ( - 1, - 1 ).
Step-by-step-explanation:
NOTE: Refer to the attachment for the diagram.
We have given the coordinates of two vertices of an isosceles right triangle.
Let the isosceles right triangle be △ABC, ∠ C = 90°.
A ≡ ( - 1, - 7 ) ≡ ( x₁, y₁ )
B ≡ ( - 7, - 1 ) ≡ ( x₂, y₂ )
C ≡ ( x, y )
Now,
Slope of line AC = ( y - y₁ ) / ( x - x₁ )
⇒ Slope of line AC = [ y - ( - 7 ) ] / [ x - ( - 1 ) ]
⇒ Slope of line AC = ( y + 7 ) / ( x + 1 )
Now,
Slope of line BC = ( y - y₂ ) / ( x - x₂ )
⇒ Slope of line BC = [ y - ( - 1 ) ] / [ x - ( - 7 ) ]
⇒ Slope of line BC = ( y + 1 ) / ( x + 7 )
Now, we have given that,
AC ⊥ BC
We know that,
Product of slopes of two lines perpendicular to each other is - 1.
∴ Slope of line AC × Slope of line BC = - 1
⇒ ( y + 7 ) / ( x + 1 ) × ( y + 1 ) / ( x + 7 ) = - 1
⇒ ( y + 7 * y + 1 ) / ( x + 1 * x + 7 ) = - 1
⇒ ( y² + y + 7y + 7 ) / ( x² + 7x + x + 7 ) = - 1
⇒ ( y² + 8y + 7 ) / ( x² + 8x + 7 ) = - 1
⇒ y² + 8y + 7 = - 1 × ( x² + 8x + 7 )
⇒ y² + 8y + 7 = - x² - 8x - 7 - - ( 1 )
Now,
AC = BC - - [ Given ]
∴ √{ [ x - ( - 1 ) ]² + [ y - ( - 7 ) ]² } = √{ [ x - ( - 7 ) ]² + [ y - ( - 1 ) ]² }
⇒ √[ ( x + 1 )² + ( y + 7 )² ] = √[ ( x + 7 )² + ( y + 1 )² ]
⇒ ( x + 1 )² + ( y + 7 )² = ( x + 7 )² + ( y + 1 )² - - [ Squaring both sides ]
⇒ x² + 2x + 1 + y² + 14y + 49 = x² + 14x + 49 + y² + 2y + 1
⇒ 2x + 14y = 14x + 2y - - [ Cancelling the like terms ]
⇒ 14y - 2y = 14x - 2x
⇒ 12y = 12x
⇒ y = 12x / 12
⇒ y = x
∴ x = y - - ( 2 )
Now,
y² + 8y + 7 = - x² - 8x - 7 - - ( 1 )
⇒ x² + 8x + 7 = - x² - 8x - 7 - - [ From ( 2 ) ]
⇒ x² + 8x + 7 + x² + 8x + 7 = 0
⇒ 2x² + 16x + 14 = 0
⇒ 2x² + ( 14 + 2 ) x + 14 = 0
⇒ 2x² + 14x + 2x + 14 = 0
⇒ 2x ( x + 7 ) + 2 ( x + 7 ) = 0
⇒ ( x + 7 ) ( 2x + 2 ) = 0
⇒ x + 7 = 0 or 2x + 2 = 0
⇒ x = - 7 or 2x = - 2
⇒ x = - 7 or x = - 1
∴ x = y = - 7 or x = y = - 1
∴ The coordinates of the third vertex of the isosceles right triangle will be ( - 7, - 7 ) OR ( - 1, - 1 ).
(-1,-1) or (-7,-7)
Here ABC is a right angle triangle given.
A(-1,-7) ,B(-7,-1),C(a,b) (suppose)
C=90° given it means AC=BC.draw a line that will be perpendicular to AB.Since ABC is isosceles triangle so its median and altitude is same.lets this is the point D that meets at AB.
This point D will be mid point of AB. Now get the coordinator of D using section formula.
D(-4,-4)
slope of AB
So Solve Of CD = 1
Equation of line CD
It will passed from C, this line Satisfy
Now AC perpendicular on AB. So Multiple of Both Slope is equal to -1