Physics, asked by Vivanjoshi, 1 year ago

If two vetors and there resultant have same value than find out the agnle between two vector.

Answers

Answered by Anonymous
76

Solution:

Given:

=> It two vectors and there resultant have same value.

To Find:

=> Angle between two vectors.

So,

If two vectors are \sf{\overrightarrow{P}} and \sf{\overrightarrow{Q}} and resultant is \sf{\overrightarrow{R},} then

\implies \sf{\overrightarrow{P} = \overrightarrow{Q}=\overrightarrow{R}=A\;\;\;\;..........(1)}

Now,

\sf{\implies \overrightarrow{R} = \sqrt{\overrightarrow{P}^{2} +\overrightarrow{Q}^{2} + 2\overrightarrow{P}\overrightarrow{Q}\cos \theta}}

From Equation (1),

\sf{\implies A = \sqrt{A^{2}+A^{2}+2A^{2}\cos \theta}}

\sf{\implies A = \sqrt{2A^{2}+2A^{2}\cos\theta}}

\sf{\implies A=\sqrt{2A^{2}(1+\cos\theta)}}

Square both sides, we get

\sf{\implies A^{2}=2A^{2}(1+\cos\theta)}

\sf{\implies \dfrac{1}{2}=1+\cos\theta}

\sf{\implies \dfrac{1}{2}-1=\cos\theta}

\sf{\implies -\dfrac{1}{2} = \cos\theta}

\large{\boxed{\boxed{\red{\sf{\implies \theta = 120^{\circ}}}}}}

Answered by BrainlyConqueror0901
3

{\bold{\underline{\underline{Answer:}}}}

{\bold{\therefore Angle=120\degree}}

{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

• In the given question information given about two vetors and there resultant have same value.

• We have to find out the agnle between two vector.

 \underline \bold{Given : } \\  \implies   \vec{P} =  \vec{Q} = \vec{R} = N \\  \\  \underline \bold{To \: Find: }\\  \implies Angle  \: between \: \vec{P} \: and \: \vec{Q} = ?

• According to given question :

 \bold{According \: to \: Vector \: formula : } \\  \implies  \vec{R} =  \sqrt{ (\vec{P})^{2} +  ({ \vec{Q}})^{2}  + 2  \: \vec{P}   \: \vec{Q} \: cos \theta }  \\  \\ \implies  \vec{R} =  \sqrt{ {N}^{2}  +  {N}^{2} + 2 \times N \times N \times cos \theta }  \\  \\  \implies N=  \sqrt{ {2N}^{2}  + 2 {N}^{2}  \times cos \theta}  \\   \\ \bold{Squaring \: both \: side : }\\   \implies  {N}^{2}  =   ({ \sqrt{2{N}^{2} (1 +  cos \theta} })^{2}  \\  \\  \implies  {N}^{2}  = 2 {N}^{2} (1 +  cos \theta) \\  \\  \implies   \frac{ \cancel{ {N}^{2} }}{2  \cancel{{N}^{2} }}  = 1 + cos \theta \\  \\  \implies cos \theta  =  \frac{1}{2}  - 1 \\  \\  \implies   cos \theta = \frac{1 - 2}{2}  \\  \\  \implies  {cos} \theta = -   \frac{  1}{2}  \\  \\  \implies\cancel{cos} \theta =\cancel{cos} 120 \degree \:  \:  \:  \:  \:  \bold{(cos 120 \degree =  -  \frac{1}{2} )} \\  \\   \bold{\implies   \theta = 120 \degree}

Similar questions