Math, asked by poojuspoojus65, 2 months ago

If two zeroes of the polynomial f(x)= x3-4x2-3x+12 are √3 and -√3, then find its third zero.

Answers

Answered by Sauron
20

Answer:

The zeros of x³ - 4x² - 3x + 12 are √3, –√3 and 4.

Step-by-step explanation:

Given polynomial = x³ - 4x² - 3x + 12

The two zeros = √3 and –√3

As √3 and –√3 are two zeros, (x - √3) and (x + √3) will be the polynomial's factor.

The factors' product will also be a factor of the polynomial.

\rightarrow (x – √3)(x + √3)

\rightarrow x(x + √3) - √3(x + √3)

\rightarrow x² + √3x - √3x - 3

\rightarrow x² - 3

x² - 3 is a factor of x³ - 4x² - 3x + 12

\sf{x - 4}\\ \begin{array}{cc} \sf{{x}^{2} - 3 } \overline{ \Big) \: \: \: \:\sf{x}^{3} - {4x}^{2} - 3x + 12} \\ \sf{- \: \: \: \: \: \ {x}^{3} \: \: \: \: \: \: \: \: \: \: \: \: - {3x}} \: \: \\ \blue - \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \blue + \: \: \\ \overline{\: \: \: \: \: \: \: \: \: \: \ \: \: \: \: \: \: \: \: \: \: \: \sf{ \: \: \: \: - \: 4 {x}^{2}} \: \: \: \: \: \: \: \: \: \: + 12 \: \: \begin{gathered} \end{gathered} \sf{}} \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \sf{ \: \: \: \: \: \: \: \: - \: \: - {4x}^{2}} \: \: \: \: \: \: \: \: \: \: - 12 \: \: \: \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \:\:\blue + \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \:\blue + \: \: \: \: \: \: \: \: \: \: \: \: \: \\ \overline{ \begin{gathered} \\ \end{gathered} \sf{\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \:0 \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: 0 \: \: \: \: }} \: \\\overline{\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: }\end{array}

Quotient = x - 4

So, (x - 4) is factor is x³ - 4x² - 3x + 12

\rightarrow x - 4 = 0

\rightarrow x = 4

The third zero is 4

Therefore, the zeros of x³ - 4x² - 3x + 12 are –√3, √3 and 4.

Similar questions
Math, 9 months ago