Math, asked by roygayani0314, 9 months ago

if two zeros of a polynomial 2x^4-2x^3-7x^2+3x+6 are -√5/2 and +√3/2, find other two zeros

Attachments:

Answers

Answered by amitkumar44481
1

Correct QuestioN :

If two zeros of a polynomial 2x⁴ -2x³ - 7x² + 3x + 6 are √3/2 and - √3/2, Find other two zeros ?

SolutioN :

Let,

  • The Zero be α and β.

 \tt \dagger \:  \:  \:  \:  \:  \alpha  =    \sqrt{ \dfrac{3}{2} } \:  \:  \: and \:  \:  \:  \beta  =   - \sqrt{ \dfrac{3}{2} }

We know,

 \tt  \dagger \:  \:  \:  \:  \: Sum \: Of  \: Zeros. \\ \tt \alpha + \beta =  \frac{-b}{a} = \frac{Coefficient  \: of  \: x}{ Coefficient  \: of  \: x^2   }

 \tt \dagger \:  \:  \:  \:  \:   Product \: Of  \: Zeros. \\ \tt \alpha  \times  \beta =  \frac{c}{a} = \dfrac{Constant  \: terms}{ Coefficient  \: of  \: x^2}

\rule{100}2

So,

☛ Sum of Zero.

\tt  : \implies \alpha + \beta =    - \sqrt{\dfrac{3}{2} } +  \sqrt{ \dfrac{3}{2} }

\tt  : \implies \alpha + \beta = \sqrt{\dfrac{3}{2} }  -  \sqrt{ \dfrac{3}{2} }

\tt  : \implies \alpha + \beta =   \sqrt{\dfrac{3 - 3}{2} }

\tt  : \implies \alpha + \beta =   0.

\rule{170}2

☛ Product of Zeros.

\tt  : \implies \alpha  \times  \beta =   \sqrt{\dfrac{3 }{2} }  \times  -  \sqrt{\dfrac{3}{2}}

\tt  : \implies \alpha  \times  \beta =    - \dfrac{3 }{2}

\rule{170}2

✎ Now, Putting the value,

 \tt \dagger \:  \:  \:  \:  \: k\Big[{x}^{2}   -  Sx + P\Big]

Where as,

  • K Constant term.
  • S Sum of Zero.
  • P Product of Zero.

 \tt  : \implies k\Bigg[{x}^{2}   -  \big(0 \big)x +  \bigg( -  \dfrac{3}{2}  \bigg)\Bigg]

 \tt  : \implies k\Bigg[{x}^{2}    -  \dfrac{3}{2}  \Bigg]

 \tt  : \implies k\Bigg[ \dfrac{2 {x}^{2}  - 3}{2} \Bigg]

 \tt  : \implies k\Bigg[ {2 {x}^{2}  - 3} \Bigg]

\rule{170}2

So, When you divided by 2x² - 5. We get.

2x² - 3 ) 2x⁴ - 2x³ - 7x² + 3x + 6 ( x² - x - 2

................2x⁴............-3x²

________________________________

.,....,....,............ -2x³ - 4x² + 3x + 6

..,.............,........- 2x³ ........ + 3x

___________________________________

.....................................- 4x .......... + 6

..................................... -4x .......... + 6

___________________________________

............................................................0.

Taking Q → x² - x - 2.

 \tt  : \implies  {x}^{2}  - x - 2 = 0.

 \tt  : \implies  {x}^{2}  - 2x + x- 2 = 0.

 \tt  : \implies  x(x - 2) + 1(x - 2) = 0.

 \tt  : \implies  (x - 2)( x+ 1) =  0.

Either,

 \tt  : \implies  x - 2=  0.

 \tt  : \implies  x =  2.

Or,

 \tt  : \implies  x+ 1 =  0.

 \tt  : \implies  x  =  - 1

✡ All Zeros is √3 / 2 , - √3/ 2 , 2 , - 1.

Answered by Anonymous
5

YouR AnsweR RefeR To ThE AttachmenT

Attachments:
Similar questions