Math, asked by LuciferX8493, 1 year ago

If two zeros of the polynomial f(x) =x^3-4x^2-3x+12 are โ3 and-โ3, then find its third zero give your answer correctly otherwise the answer will be reported


hukam0685: if zeros are √3,-√3,then i had solve it

Answers

Answered by hukam0685
4

(x -  \sqrt{3} )(x +  \sqrt{3} )
are the two factors of polynomial.on Multiplication of these two
 {x}^{2}  - 3
now divide the polynomial by this factor ,and from quotient we will find another zero
 {x}^{2} - 3) {x}^{3}   - 4 {x}^{2} - 3x + 12(x - 4 \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  {x}^{3}   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   - 3x \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    -  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  +  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: - 4 {x}^{2}   \:  \:  \:  \:  \:  \:  \:  \:  \:  \: + 12 \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  - 4 {x}^{2}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  + 12 \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: + \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   -  \\  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: 0 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: 0
the quotient is
x - 4
so to find zero
x - 4 = 0 \\ x = 4
is the third zero.
please do request for answer.don't give order.
Similar questions