Math, asked by arifskp16, 5 months ago

if two zeros of the polynomial x⁴-13x³-33x²+39x+90 are root 3 and minus root 3 find the other zeros of the polynomial​

Answers

Answered by rajeevr06
0

Answer:

Given roots of polynomial are √3 & –√3

then (x–√3) (x+√3) = x²–3 is factor of polynomial.

i.e

 {x}^{4}  - 13 {x}^{3}  - 33 {x}^{2} +  39x + 90 = 0 \\  {x}^{4}  - 13 {x}^{3}  - 30 {x}^{2}  - 3 {x}^{2}  + 39x + 90 = 0 \\  {x}^{2} ( {x}^{2}  - 13x - 30) - 3( {x}^{2}  - 13x - 30) = 0 \\ ( {x}^{2}  - 13x - 30)( {x}^{2}  - 3) = 0 \\ i.e \:  {x}^{2}  - 13x - 30 = 0 \\  {x}^{2}  - 15x  + 2x - 30 = 0 \\ x(x - 15) + 2(x - 15) = 0 \\ (x - 15)(x + 2) = 0 \\ so \:  \: x = 15 \:  \: and \:  \:  - 2

so other roots are 15 & –2.

Ans.

Similar questions