if two zeros of the polynomial x4-6x3-26x2+138x-35are 2+-root 3,find other zeros...
please help fast ..
Answers
Answered by
6
Given,
Quatric equation = x⁴ - 6x³ - 26 x² + 138 x - 35.
Here coefficient of x⁴ ( a ) = 1
Coefficient of x³ ( b ) = -6
Coefficient of x² ( c ) = -26
Coefficient of x ( d ) = 138
Constant term ( e ) = -35.
Two zeroes are = 2 + √3 ( α ) and 2 - √3 ( β ).
Let other 2 zeroes are Γ and Θ.
Sum of zeroes = - b/a
⇒ α + β + Г + Θ = - ( -6 ) / 1 = 6
⇒ 2 + √3 + 2 - √3 + Γ + Θ = 6
⇒ 4 + Г + Θ = 6
⇒ Γ + Θ = 6 - 4 = 2. ---- ( 1 )
Now ,
Product of zeroes = e / a
⇒ α × β × Г × Θ = -35 / 1
⇒ ( 2 + √3 ) ( 2 - √3 ) × Г x Θ = -35
⇒ { ( 2 )² - ( √3 )² } × Γ × Θ = -35
⇒ ( 4 - 3 ) × Γ × Θ = -35
⇒ Γ × Θ = -35 ------ ( 2 )
Now ,
( Γ - Θ )² = ( Γ + Θ )² - 4 × Γ × Θ
By substituting the values of ( 1 ) and ( 2 ) ,
⇒ ( Γ - Θ )² = ( 2 )² - 4 × ( - 35 )
⇒ (Γ - Θ )² = 4 + 140
⇒ ( Γ - Θ )² = 144
⇒ ( Γ - Θ ) = √144
⇒ ( Γ - Θ ) = 12 --------- ( 3 ).
By adding ( 1 ) and ( 3 ) ,
⇒ Γ + Θ + Γ - Θ = 12 + 2
⇒ 2 Γ = 14
⇒ Γ = 14 ÷ 2
∴ Γ = 7.
By substituting the value of Γ in ( 3 ),
⇒ Γ - Θ = 12
⇒ 7 - Θ = 12
⇒ Θ = 7 - 12
∴ Θ = -5.
Therefore , other 2 zeroes are ( -5 ) and ( 7 ).
Quatric equation = x⁴ - 6x³ - 26 x² + 138 x - 35.
Here coefficient of x⁴ ( a ) = 1
Coefficient of x³ ( b ) = -6
Coefficient of x² ( c ) = -26
Coefficient of x ( d ) = 138
Constant term ( e ) = -35.
Two zeroes are = 2 + √3 ( α ) and 2 - √3 ( β ).
Let other 2 zeroes are Γ and Θ.
Sum of zeroes = - b/a
⇒ α + β + Г + Θ = - ( -6 ) / 1 = 6
⇒ 2 + √3 + 2 - √3 + Γ + Θ = 6
⇒ 4 + Г + Θ = 6
⇒ Γ + Θ = 6 - 4 = 2. ---- ( 1 )
Now ,
Product of zeroes = e / a
⇒ α × β × Г × Θ = -35 / 1
⇒ ( 2 + √3 ) ( 2 - √3 ) × Г x Θ = -35
⇒ { ( 2 )² - ( √3 )² } × Γ × Θ = -35
⇒ ( 4 - 3 ) × Γ × Θ = -35
⇒ Γ × Θ = -35 ------ ( 2 )
Now ,
( Γ - Θ )² = ( Γ + Θ )² - 4 × Γ × Θ
By substituting the values of ( 1 ) and ( 2 ) ,
⇒ ( Γ - Θ )² = ( 2 )² - 4 × ( - 35 )
⇒ (Γ - Θ )² = 4 + 140
⇒ ( Γ - Θ )² = 144
⇒ ( Γ - Θ ) = √144
⇒ ( Γ - Θ ) = 12 --------- ( 3 ).
By adding ( 1 ) and ( 3 ) ,
⇒ Γ + Θ + Γ - Θ = 12 + 2
⇒ 2 Γ = 14
⇒ Γ = 14 ÷ 2
∴ Γ = 7.
By substituting the value of Γ in ( 3 ),
⇒ Γ - Θ = 12
⇒ 7 - Θ = 12
⇒ Θ = 7 - 12
∴ Θ = -5.
Therefore , other 2 zeroes are ( -5 ) and ( 7 ).
Anonymous:
Thanks Shraddha
Answered by
7
hey friend...
hope it will help you.
hope it will help you.
Attachments:
Similar questions