Math, asked by rizwanamna262, 1 month ago

If U={1,2,3,4,5}. A={1,2,5} B={3,4,5}. prove that : A'n B' = (A U B)'​

Answers

Answered by mathdude500
5

\large\underline{\sf{Given- }}

U={1,2,3,4,5}

A={1,2,5}

B={3,4,5}

\large\underline{\sf{To\:prove - }}

\rm :\longmapsto\: A'\cap B' = (A\cup B)'

 \purple{\large\underline{\sf{Solution-}}}

Given that,

U={1,2,3,4,5}

A={1,2,5}

B={3,4,5}

Now,

\rm :\longmapsto\:A' =  \{3, \: 4 \}

\rm :\longmapsto\:B' =  \{1, \: 2\}

Thus,

 \red{\rm :\longmapsto\: \red{ \boxed{ \sf{ \:A'\cap B' =  \phi}}}}

Now,

\rm :\longmapsto\:A\cup B = \{1,2,3,4,5\}

Thus,

\red{\rm :\longmapsto\: \boxed{ \sf{ \:(A\cup B)' \:  =  \:  \phi}}}

Thus, we concluded that

\red{\rm :\longmapsto\: \boxed{ \sf{ \:(A\cup B)' \:  =   \: A' \: \cap  \: B'}}}

Hence, Proved

Additional Information :-

1. Commutative Law

\red{ \boxed{ \sf{ \:A\cup B = B\cup A}}}

\red{ \boxed{ \sf{ \:A\cap B =B \cap A}}}

2. Associative Law

\red{ \boxed{ \sf{ \:(A\cup B)\cup C = A\cup (B\cup C)}}}

\red{ \boxed{ \sf{ \:(A\cap B)\cap C = A\cap (B\cap C)}}}

3. Distributive Law

\red{ \boxed{ \sf{ \:A\cup (B\cap C) = (A\cup B)\cap (A\cup C)}}}

\red{ \boxed{ \sf{ \:A\cap (B\cup C) = (A\cap B)\cup (A\cap C)}}}

Answered by dcppr06
0

Answer:

U = { 1,2,3,4,5,6}

A = {2,3}

B= {3,4,5}

AUB= { 2,3} U {3,4,5}= { 2,3,4,5}

therefore, (AUB) = { 1,6}

B= {1,2,6}

therefore,AUB= {1,4,5,6} U = {1,2,6}= {1,6}

Similar questions