Math, asked by swaraj3184, 10 months ago

If U = 2 - i, V = - 2+ i , then Re (UV / V bar) is​

Answers

Answered by Swarup1998
0

Complex Numbers

Given: U=2-i,\:V=-2+i

To find: Re(\frac{UV}{\overline{V}})

SOLUTION:

  • Now, UV=(2-i)(-2+i)

  • =-4+2i+2i-i^{2}

  • =-4+4i+1, since i=\sqrt{-1}

  • =-3+4i

  • and \overline{V} is the conjugate of V; so,

  • \quad \overline{V}=-2-i

  • \therefore \frac{UV}{\overline{V}}

  • =\frac{-3+4i}{-2-i}

  • =\frac{3-4i}{2+i}

  • =\frac{(3-4i)(2-i)}{(2+i)(2-i)},

  • where we have multiplied both the numerator and the denominator by the conjugate of the denominator

  • =\frac{6-3i-8i+4i^{2}}{4-i^{2}}

  • =\frac{6-11i-4}{4+1}

  • =\frac{2-11i}{5}

  • \Rightarrow\frac{UV}{\overline{V}}=\frac{2}{5}-\frac{11}{5}i

Answer: \therefore Re(\frac{UV}{\overline{V}})=\frac{2}{5}.

Similar questions