Math, asked by tjananithiruvelmurug, 6 months ago

if u =3x+2y-z,v=x-2y+z and w=x(x+2y-z) show that they are functionally related and find the relation​

Answers

Answered by MaheswariS
15

\textbf{Given:}

\textsf{u=3x+2y-z}

\textsf{v=x-2y+z}

\textsf{w=x(x+2y-z)}

\textbf{To find:}

\textsf{The relation connecting u,v and w}

\textbf{Solution:}

\mathsf{Consider,}

\textsf{u=3x+2y-z}.............(1)

\textsf{v=x-2y+z}...............(2)

\textsf{w=x(x+2y-z)}..........(3)

\mathsf{Adding\;(1)\;and\;(2),}

\mathsf{u+v=4x}

\implies\boxed{\mathsf{x=\dfrac{u+v}{4}}}...........(4)

\mathsf{Now,\;(1)\,can\;be\;written\;as}

\mathsf{u=2x+(x+2y-z)}

\mathsf{u-2x=x+2y-z}

\mathsf{u-2(\dfrac{u+v}{4})=x+2y-z}

\mathsf{u-(\dfrac{u+v}{2})=x+2y-z}

\implies\boxed{\mathsf{\dfrac{u-v}{2}=x+2y-z}}.............(5)

\mathsf{Using,\;(4)\;and\;(5),\;w\;can\;be\;written\;as}

\mathsf{w=\dfrac{u+v}{4}\left(\dfrac{u-v}{2}\right)}

\mathsf{w=\dfrac{(u+v)(u-v)}{8}}

\implies\boxed{\mathsf{w=\dfrac{u^2-v^2}{8}}}

\textsf{This is the required relation.}

\textsf{Hence, u,v and w functionally related}

Answered by pulakmath007
6

SOLUTION

GIVEN

u =3x+2y-z,v=x-2y+z and w=x(x+2y-z)

TO SHOW

They are functionally related and find the relation

EVALUATION

Here it is given that

 \sf{u = 3x + 2y - z} \:  \:  \:  ......(1)

 \sf{v =x - 2y + z } \:  \:  \: ....(2)

 \sf{ w = x(x + 2y - z)} \:  \:  \: ....(3)

Equation (1) + Equation (2) gives

  \sf{u + v}

 =  \sf{(3x + 2y - z )+ (x - 2y + z)}

 =  \sf{4x}

 \therefore \:  \:  \sf{u + v = 4x} \:  \: \:  \:  \:  ........(3)

Now

 \sf{u - v}

 =  \sf{(3x + 2y - z ) -  (x - 2y + z)}

 =  \sf{3x + 2y - z  -  x  +  2y  -  z}

 =  \sf{2x + 4y -2 z  }

 =  \sf{2(x + 2y - z ) }

 \sf{ \therefore \:  \: u - v = 2(x + 2y - z ) } \:  \:  \: ....(4)

Equation (3) × Equation (4) gives

  \sf{(u + v)(u - v) = 4x .2  (x + 2y - z ) }

  \implies \sf{ {u}^{2} -  {v}^{2}  = 8x  (x + 2y - z ) }

  \implies \sf{ {u}^{2} -  {v}^{2}  = 8w }

Which shows that u, v, w are functionally related and the required relation is

 \boxed{   \:   \: \sf{ {u}^{2} -  {v}^{2}  = 8w } \:  \: }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If integral of (x^-3)5^(1/x^2)dx=k5^(1/x^2), then k is equal to

https://brainly.in/question/15427882

2. Find the nth derivative of sin 6x cos 4x.

https://brainly.in/question/29905039

Similar questions