Physics, asked by Anonymous, 13 hours ago

If u = 9, a = 4, s = 35, then find the value of t

Answers

Answered by NewGeneEinstein
4
  • initial velocity=u=9m/s
  • Acceleration=a=4m/s^2
  • Distance=s=35m
  • Time=t=?

ACCORDING TO 2ND EQUATION OF KINEMATICS

\boxed{\sf s=ut+\dfrac{1}{2}at^2}

  • putting values

\\ \sf\longmapsto 35=9t+\dfrac{1}{2}\times 4t^2

\\ \sf\longmapsto 35=9t+2t^2

\\ \sf\longmapsto 2t^2+9t-35=0

\\ \sf\longmapsto 2t^2+14t-5t-35=0

\\ \sf\longmapsto 2t(t+7)-5(t+7)=0

\\ \sf\longmapsto (2t-5)(t+7)=0

\\ \sf\longmapsto (2t-5)=0\:or\:(t+7)=0

\\ \sf\longmapsto t=\dfrac{5}{2}\;or\:t=-7

  • Time can't be negative

\\ \sf\longmapsto t=\dfrac{5}{2}

\\ \sf\longmapsto t=2.5s

Answered by Anonymous
26

\huge\bf\red{\mid{\fbox{\underline{\maltese{Answer}}\maltese}}}

Given :-

\blue\longrightarrow \: u = 9m/s \:  \:  \:  \:  \:  \:  \:  \\  \blue\longrightarrow \:a = 4m/s²   \:  \:  \:  \:  \:  \: \:  \\ \blue\longrightarrow \:s = 35 \: m  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

To Find :-

\red\longrightarrow \: t = \:  ?

Formula Used :-

\pink\longrightarrow  \: s = ut +  \frac{1}{2}  \: a  {t}^{2}

Solution :-

\green\longrightarrow  \: 35 \: m = 9 \times t +  \frac{1}{2}  \times 4 \times  {t}^{2}  \\  \green\longrightarrow  \:  35 \: m = 9t +  \frac{1}{\cancel{2}}  \times \cancel{4} \times  {t}^{2}  \:  \:  \:  \:  </u><u> \\  \green\longrightarrow 35 \: m = 9t + 2  {t}^{2}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \\ \green\longrightarrow \: 35 \: m  +  9t - 2 {t}^{2}  = 0 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \green\longrightarrow \:  35 + 14t - 5t - 2 {t}^{2}  = 0 \:  \:  \:  \:  \:  \\ \green\longrightarrow \: 2t(7  +  t)  -  5(7  + t) = 0 \:  \:  \:  \\  \green\longrightarrow \: (2t - 5)(7 + t) = 0 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\

Therefore,

\longrightarrow \: t =  \frac{5}{2}  \: or \: t =  - 7

We know that, time can never be in negative.

\longrightarrow \: t =  \frac{5}{2}  = 2.5 \: seconds

Therefore, time ( t) is 2.5 seconds.

Thank you!

Similar questions