Math, asked by Aadhi2006S, 11 months ago

if u answer I will follow u ​

Attachments:

Answers

Answered by Anonymous
191

\bold{\underline{\underline{\huge{\sf{AnsWer:}}}}}

Compound Interest = 331.

\bold{\underline{\underline{\huge{\sf{StEp\:by\:stEp\:explanation:}}}}}

GIVEN :

  • Simple interest = 300
  • Time = 3 years
  • Rate of interest = 10%

TO FIND :

  • Compound interest

SOLUTION :

First we will calculate the principal amount.

For this we have the formula for simple interest.

Formula :

\bold{\large{\boxed{\sf{\red{S.I\:=\:{\dfrac{P\times\:R\times\:T}{100}}}}}}}

Where,

  • SI = Simple Interest
  • P = Principal Amount
  • R = Rate of interest
  • T = time period

Block in the values,

\rightarrow \bold{300\:=\:{\dfrac{P\times\:10\times\:3}{100}}}

\rightarrow \bold{300\:=\:{\dfrac{P\times\:30}{100}}}

\rightarrow \bold{\dfrac{300\:\times\:100=\:P\times\:30}}

\rightarrow \bold{30000\:=\:P\:\times\:30}

\rightarrow \bold{\dfrac{30000}{30}} = P

\rightarrow \bold{1000=P}

° Principal amount = 1000

Now we will find amount, A.

Formula :

\bold{\large{\boxed{\sf{\green{A\:=\:P\:(1\:+\:{\dfrac{r}{100})^n}}}}}}

Where,

  • A = amount
  • P = principal amount
  • r = rate of interest
  • n = time period

Block in the values,

\rightarrow \bold{A\:=\:1000\:(1+{\dfrac{10}{100}})^3}

\rightarrow \bold{A\:=\:1000\:({\dfrac{100+10}{100}})^3}

\rightarrow \bold{A\:=\:1000\:({\dfrac{110}{100}})^3}

\rightarrow \bold{A=\:1000\times\:{\dfrac{110}{100}\times\:{\dfrac{110}{100}\times\:{\dfrac{110}{100}}}}}

\rightarrow \bold{A\:=\:{\dfrac{1331000000}{1000000}}}

\rightarrow \bold{A=\:1331}

° Amount = 1331

Now we can calculate the compound interest by simply calculating the difference between Amount and principal.

Formula :

CI = Amount - Principal

Block in the values,

\rightarrow \bold{CI\:=\:1331-1000}

\rightarrow \bold{CI\:=\:331}

° Compound interest for 3 years will be 331.

Answered by Anonymous
36

SOLUTION:-

════════════

Given:

The simple interest on a certain principal for 3 years at 10% p.a. is Rs.300.

To find:

══════

The compound Interest accrued in 3 years.

Explanation:

═════════

In first Case:

  • Simple Interest= Rs.300
  • Time= 3 years
  • Rate= 10% p.a.
  • Principal= ___?

Formula of Simple Interest:

════════════════════

S.I. =  \frac{P \times R   \times T}{ 100 }

So,

Formula of the Principal:

P =  \frac{S.I. \times 100}{R \times T}

According to the question:

═════════════════

P =  \frac{300 \times 100}{3 \times 10}  \\  \\ P =  \frac{30000}{30}  \\  \\ P = Rs.1000

&

In second Case:

We have,

  • Principal= Rs.1000
  • Rate = 10%
  • Time= 3 years

Here,find Amount of Compound Interest

Formula of the compound Interest:

══════════════════════

C.I.= Amount - Principal

Or

A = P(1 +  \frac{R}{100} ) {}^{n}

So,

A= 1000(1 +  \frac{10}{100} ) {}^{3}  \\  \\ A = 1000(1 +  \frac{1}{10} ) {}^{3}  \\  \\ A = 1000( \frac{10 + 1}{10} ) {}^{3}  \\  \\ A = 1000 \times  \frac{11}{10}  \times  \frac{11}{10}  \times  \frac{11}{10}  \\  \\ A = (11) {}^{3}  \\  \\ A = Rs.1331

Now,

Compound Interest:

═════════════

Amount - Principal

Rs.1331 - Rs.1000

Rs.331

Hence,

The compound Interest accrued in 3 years is Rs.331

:)

Similar questions