Math, asked by kavyashree4859, 3 months ago

If u answer this question i will give u 20 points and mark as brainliest

Attachments:

Answers

Answered by 12thpáìn
330

Answer=√5

Step by step explanation

\\\\\implies\sf \sqrt{45}  - 3 \sqrt{20}  + 4 \sqrt{5}   \\ \\ \implies\sf \sqrt{3 \times 3 \times 5}  -  3\sqrt{2 \times 2 \times 5}  + 4 \sqrt{5}   \\  \\  \implies\sf \sqrt{ {3}^{2} \times 5 }  - 3 \sqrt{ {2}^{2} \times 5 }  + 4 \sqrt{5}   \\ \\\implies\sf 3 \sqrt{5}  - 3 \times 2 \sqrt{5   }  + 4 \sqrt{5}   \\ \\ \implies\sf3 \sqrt{5}  - 6 \sqrt{5}  + 4 \sqrt{5}  \\  \\ \implies\sf 7 \sqrt{5}  - 6 \sqrt{5}  \\  \\ \implies\sf \sqrt{5}  \\  \\  \\

\sf \sqrt{45}  - 3 \sqrt{20}  + 4 \sqrt{5} = \pink{ \sqrt{5}}\\\\

Laws of exponents

\begin{gathered}~~~~\begin{gathered}\sf {a}^{m} \times {a}^{n} = {a}^{m + n} \: \: \: \: \: \: \: \: \: \: \sf {a}^{m} \div {a}^{n} = {a}^{m - n} \\ \sf{( {a}^{m} ) ^{n} = {a}^{mn} \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: a {}^{m} \times {n}^{m} = (ab) ^{m} } \\ \sf{a}^{0} = 1 \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: {\frac{ {a}^{m} }{ {b}^{m} }= \left( \frac{a}{b} \right) ^{m} }\\\\\end{gathered}\end{gathered}

Similar questions