Math, asked by aksharasaju1994, 11 months ago

if u=ax+by and v=cx+dy then d(u,v)/d(x,y)?

Answers

Answered by rajdas23218
5

Answer:

For u = ax + by

partial diff w rt x = a

partial diff w rt y = b

for v = cx + dy

partial diff w rt x = c

partial diff w rt y = d

Answered by friendmahi89
0

Given,

u=ax+by                                               ............... (1)        

v=cx+dy                                               ................ (2)

To Find,

\frac{d(u,v)}{d(x,y)}

Solution,

By definition of Jacobian we have,

\frac{d(u,v)}{d(x,y)} =  \left[\begin{array}{cc}\frac{du}{dx} &\frac{du}{dy} \\\frac{dv}{dx} &\frac{dv}{dy} \end{array}\right]                             ................... (3)

So,

\frac{du}{dx} = a                                         [ partially differentiatind equation (1) w.r.t. x]

similarly,

\frac{du}{dy} = b

\frac{dv}{dx} = c

\frac{dv}{dy} = d

From (3),

\frac{d(u,v)}{d(x,y)} = \left[\begin{array}{cc}a&b\\c&d\\\end{array}\right] = ad-bc.

Similar questions