if u can, do it as soon as possible
Attachments:
sanya55:
not sure
Answers
Answered by
5
Here is your solution :
Trigonometric identities used in this question.
=> cos∅ = √( 1 - sin²∅ )
Algebric identities used in this question,
=> ( a - b)² = a² + b² - 2ab
Given,
=> 2cos∅ + sin∅ = 1
=> 2[ √( 1 - sin²∅ ) ] + sin∅ = 1
=> 2[ √( 1 - sin²∅ ) ] = ( 1 - sin∅ )
=> √( 1 - sin²∅ ) = ( 1 - sin∅ ) / 2
=> ( 1 - sin²∅ ) = [ ( 1 - sin∅ ) / 2 ]²
=> ( 1 - sin²∅ ) = [ ( 1 + sin²∅ - 2 sin∅ ) / 4 ]
=> 4( 1 - sin²∅ ) = ( 1 + sin²∅ - 2 sin∅ )
=> 4 - 4 sin²∅ = 1 + sin²∅ - 2 sin∅
=> - 4 sin²∅ - sin²∅ + 4 - 1 + 2 sin∅ = 0
=> - 5 sin²∅ + 3 + 2 sin∅ = 0
=> 5 sin²∅ - 2 sin∅ - 3 = 0
=> 5 sin²∅ - 5 sin∅ + 3 sin∅ - 3 = 0
=> 5 sin∅ ( sin∅ - 1 ) + 3 ( sin∅ - 1 ) = 0
=> ( sin∅ - 1 ) ( 5 sin∅ + 3 ) = 0
=> ( sin∅ - 1 ) = 0 ÷ ( 5 sin∅ + 3 )
=> sin∅ - 1 = 0
•°• sin∅ = 1
" Or "
=> ( sin∅ - 1 ) ( 5 sin∅ + 3 ) = 0
=> ( 5 sin∅ + 3 ) = 0 ÷ ( sin∅ - 1 )
=> ( 5 sin∅ + 3 ) = 0
=> 5 sin∅ = - 3
•°• sin∅ = ( -3 / 5 )
Hence, sin∅ = 1 or ( -3/5 )
Now,
=> cos∅ = √( 1 - sin²∅ )
If, sin∅ = 1
=> cos∅ = √( 1 - 1² )
=> cos∅ = √( 1 - 1 )
=> cos∅ = √0
•°• cos∅ = 0
Now,
= 4 cos∅ + 3 sin∅
= ( 4 × 0 ) + 3 × 1
= 0 + 3
= 3
When, sin∅ = ( -3 / 5 )
=> cos∅ = √( 1 - sin²∅ )
=> cos∅ = √[ 1 - ( -3 / 5 )² ]
=> cos∅ = √[ 1 - ( 9/25 ) ]
=> cos∅ = √[ ( 25 - 9 ) / 25 ]
=> cos∅ = √( 16 / 25 )
•°• cos∅ = 4/5
Now,
If , cos∅ = 4/5
= 4 cos∅ + 3 sin∅
= 4 ( 4/5 ) + 3 ( -3/5 )
= ( 16/5 ) - ( 9/5 )
= ( 16 - 9 ) /5
= 7/5
Hence, the required answers are 3 and ( 7/5 ).
Hope it helps !!
Trigonometric identities used in this question.
=> cos∅ = √( 1 - sin²∅ )
Algebric identities used in this question,
=> ( a - b)² = a² + b² - 2ab
Given,
=> 2cos∅ + sin∅ = 1
=> 2[ √( 1 - sin²∅ ) ] + sin∅ = 1
=> 2[ √( 1 - sin²∅ ) ] = ( 1 - sin∅ )
=> √( 1 - sin²∅ ) = ( 1 - sin∅ ) / 2
=> ( 1 - sin²∅ ) = [ ( 1 - sin∅ ) / 2 ]²
=> ( 1 - sin²∅ ) = [ ( 1 + sin²∅ - 2 sin∅ ) / 4 ]
=> 4( 1 - sin²∅ ) = ( 1 + sin²∅ - 2 sin∅ )
=> 4 - 4 sin²∅ = 1 + sin²∅ - 2 sin∅
=> - 4 sin²∅ - sin²∅ + 4 - 1 + 2 sin∅ = 0
=> - 5 sin²∅ + 3 + 2 sin∅ = 0
=> 5 sin²∅ - 2 sin∅ - 3 = 0
=> 5 sin²∅ - 5 sin∅ + 3 sin∅ - 3 = 0
=> 5 sin∅ ( sin∅ - 1 ) + 3 ( sin∅ - 1 ) = 0
=> ( sin∅ - 1 ) ( 5 sin∅ + 3 ) = 0
=> ( sin∅ - 1 ) = 0 ÷ ( 5 sin∅ + 3 )
=> sin∅ - 1 = 0
•°• sin∅ = 1
" Or "
=> ( sin∅ - 1 ) ( 5 sin∅ + 3 ) = 0
=> ( 5 sin∅ + 3 ) = 0 ÷ ( sin∅ - 1 )
=> ( 5 sin∅ + 3 ) = 0
=> 5 sin∅ = - 3
•°• sin∅ = ( -3 / 5 )
Hence, sin∅ = 1 or ( -3/5 )
Now,
=> cos∅ = √( 1 - sin²∅ )
If, sin∅ = 1
=> cos∅ = √( 1 - 1² )
=> cos∅ = √( 1 - 1 )
=> cos∅ = √0
•°• cos∅ = 0
Now,
= 4 cos∅ + 3 sin∅
= ( 4 × 0 ) + 3 × 1
= 0 + 3
= 3
When, sin∅ = ( -3 / 5 )
=> cos∅ = √( 1 - sin²∅ )
=> cos∅ = √[ 1 - ( -3 / 5 )² ]
=> cos∅ = √[ 1 - ( 9/25 ) ]
=> cos∅ = √[ ( 25 - 9 ) / 25 ]
=> cos∅ = √( 16 / 25 )
•°• cos∅ = 4/5
Now,
If , cos∅ = 4/5
= 4 cos∅ + 3 sin∅
= 4 ( 4/5 ) + 3 ( -3/5 )
= ( 16/5 ) - ( 9/5 )
= ( 16 - 9 ) /5
= 7/5
Hence, the required answers are 3 and ( 7/5 ).
Hope it helps !!
Similar questions